These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 29376699
1. Longitudinal Negative Magnetoresistance and Magnetotransport Phenomena in Conventional and Topological Conductors. Andreev AV, Spivak BZ. Phys Rev Lett; 2018 Jan 12; 120(2):026601. PubMed ID: 29376699 [Abstract] [Full Text] [Related]
2. Z_{2} and Chiral Anomalies in Topological Dirac Semimetals. Burkov AA, Kim YB. Phys Rev Lett; 2016 Sep 23; 117(13):136602. PubMed ID: 27715103 [Abstract] [Full Text] [Related]
3. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. Wan B, Schindler F, Wang K, Wu K, Wan X, Neupert T, Lu HZ. J Phys Condens Matter; 2018 Dec 19; 30(50):505501. PubMed ID: 30468150 [Abstract] [Full Text] [Related]
4. Breakdown of the Chiral Anomaly in Weyl Semimetals in a Strong Magnetic Field. Kim P, Ryoo JH, Park CH. Phys Rev Lett; 2017 Dec 29; 119(26):266401. PubMed ID: 29328719 [Abstract] [Full Text] [Related]
5. Negative Magnetoresistance in the GeSn Strip. Shu K, Wang N, Huo N, Wan F, Li J, Xue C. ACS Appl Mater Interfaces; 2021 Jun 30; 13(25):29960-29964. PubMed ID: 34128632 [Abstract] [Full Text] [Related]
6. Room-temperature chiral charge pumping in Dirac semimetals. Zhang C, Zhang E, Wang W, Liu Y, Chen ZG, Lu S, Liang S, Cao J, Yuan X, Tang L, Li Q, Zhou C, Gu T, Wu Y, Zou J, Xiu F. Nat Commun; 2017 Jan 09; 8():13741. PubMed ID: 28067234 [Abstract] [Full Text] [Related]
7. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin CA, Bernevig BA, Cava RJ, Ong NP. Nat Mater; 2016 Nov 09; 15(11):1161-1165. PubMed ID: 27348578 [Abstract] [Full Text] [Related]
8. Anomalous electronic structure and magnetoresistance in TaAs2. Luo Y, McDonald RD, Rosa PF, Scott B, Wakeham N, Ghimire NJ, Bauer ED, Thompson JD, Ronning F. Sci Rep; 2016 Jun 07; 6():27294. PubMed ID: 27271852 [Abstract] [Full Text] [Related]
9. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Li CZ, Wang LX, Liu H, Wang J, Liao ZM, Yu DP. Nat Commun; 2015 Dec 17; 6():10137. PubMed ID: 26673625 [Abstract] [Full Text] [Related]
10. High-Mobility Topological Semimetals as Novel Materials for Huge Magnetoresistance Effect and New Type of Quantum Hall Effect. Zivieri R, Lumetti S, Létang J. Materials (Basel); 2023 Dec 09; 16(24):. PubMed ID: 38138720 [Abstract] [Full Text] [Related]
12. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals. Lucas A, Davison RA, Sachdev S. Proc Natl Acad Sci U S A; 2016 Aug 23; 113(34):9463-8. PubMed ID: 27512042 [Abstract] [Full Text] [Related]
16. Large Magneto-Transverse and Longitudinal Thermoelectric Effects in the Magnetic Weyl Semimetal TbPtBi. Wang H, Zhou Z, Ying J, Xiang Z, Wang R, Wang A, Chai Y, He M, Lu X, Han G, Pan Y, Wang G, Zhou X, Chen X. Adv Mater; 2023 Jan 25; 35(2):e2206941. PubMed ID: 36300801 [Abstract] [Full Text] [Related]
17. Evidence for the chiral anomaly in the Dirac semimetal Na₃Bi. Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M, Wang W, Cava RJ, Ong NP. Science; 2015 Oct 23; 350(6259):413-6. PubMed ID: 26338798 [Abstract] [Full Text] [Related]
19. Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals. Nandy S, Sharma G, Taraphder A, Tewari S. Phys Rev Lett; 2017 Oct 27; 119(17):176804. PubMed ID: 29219428 [Abstract] [Full Text] [Related]
20. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Zhang N, Zhao G, Li L, Wang P, Xie L, Cheng B, Li H, Lin Z, Xi C, Ke J, Yang M, He J, Sun Z, Wang Z, Zhang Z, Zeng C. Proc Natl Acad Sci U S A; 2020 May 26; 117(21):11337-11343. PubMed ID: 32398373 [Abstract] [Full Text] [Related] Page: [Next] [New Search]