These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Exploring the Mechanism of 4-Hydroxy-1,3,5-triazine-6-thiol Collector on Depressant-Free Flotation Separation of Galena from Sphalerite. Cheng C, Liu M, Qiu Z, Liu S, Yang L, Chen W, Liu G. Langmuir; 2024 Oct 01; 40(39):20811-20819. PubMed ID: 39302707 [Abstract] [Full Text] [Related]
4. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Chandra AP, Gerson AR. Adv Colloid Interface Sci; 2009 Jan 30; 145(1-2):97-110. PubMed ID: 18851843 [Abstract] [Full Text] [Related]
6. A novel mineral flotation process using Thiobacillus ferrooxidans. Nagaoka T, Ohmura N, Saiki H. Appl Environ Microbiol; 1999 Aug 30; 65(8):3588-93. PubMed ID: 10427053 [Abstract] [Full Text] [Related]
7. Study on the Interaction between Galena and Sphalerite During Grinding Based on the Migration of Surface Components. Huang B, Lai H, Deng J, Xu H, Fan G. ACS Omega; 2019 Jul 31; 4(7):12489-12497. PubMed ID: 31460368 [Abstract] [Full Text] [Related]
8. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. Santhiya D, Subramanian S, Natarajan KA. J Colloid Interface Sci; 2002 Dec 15; 256(2):237-48. PubMed ID: 12573627 [Abstract] [Full Text] [Related]
9. Progressive Hydrophilic Processes of the Pyrite Surface in High-Alkaline Lime Systems. Zhang H, Wang R, Sun W, Zhu Y, Lin S, Zhang C. Langmuir; 2023 Jul 04; 39(26):9051-9059. PubMed ID: 37339381 [Abstract] [Full Text] [Related]
12. Utilization and Mechanisms of Tannic Acid as a Depressant for Chalcopyrite and Pyrite Separation. Sun D, Li M, Zhang M, Cui R, Yang Z, Yu L, Wang D, Yao W. ACS Omega; 2023 Aug 22; 8(33):30474-30482. PubMed ID: 37636951 [Abstract] [Full Text] [Related]
14. Selective separation of pyrite and chalcopyrite by biomodulation. Chandraprabha MN, Natarajan KA, Modak JM. Colloids Surf B Biointerfaces; 2004 Sep 01; 37(3-4):93-100. PubMed ID: 15342018 [Abstract] [Full Text] [Related]
16. The Effects of Galvanic Interactions with Pyrite on the Generation of Acid and Metalliferous Drainage. Qian G, Fan R, Short MD, Schumann RC, Li J, St C Smart R, Gerson AR. Environ Sci Technol; 2018 May 01; 52(9):5349-5357. PubMed ID: 29608053 [Abstract] [Full Text] [Related]
17. Towards Understanding the Role of Surface Gas Nanostructures: Effect of Temperature Difference Pretreatment on Wetting and Flotation of Sulfide Minerals and Pb-Zn Ore. Mikhlin Y, Karacharov A, Vorobyev S, Romanchenko A, Likhatski M, Antsiferova S, Markosyan S. Nanomaterials (Basel); 2020 Jul 12; 10(7):. PubMed ID: 32664665 [Abstract] [Full Text] [Related]
18. Physical and chemical analysis of elemental sulfur formation during galena surface oxidation. Hampton MA, Plackowski C, Nguyen AV. Langmuir; 2011 Apr 05; 27(7):4190-201. PubMed ID: 21391636 [Abstract] [Full Text] [Related]
19. Surface Chemical Studies on Sphalerite and Galena Using Bacillus polymyxa. Santhiya D, Subramanian S, Natarajan KA. J Colloid Interface Sci; 2001 Mar 15; 235(2):298-309. PubMed ID: 11254306 [Abstract] [Full Text] [Related]
20. The Combined Effects of Galvanic Interaction and Silicate Addition on the Oxidative Dissolution of Pyrite: Implications for Acid and Metalliferous Drainage Control. Qian G, Fan R, Short MD, Schumann RC, Pring A, Gerson AR. Environ Sci Technol; 2019 Oct 15; 53(20):11922-11931. PubMed ID: 31524385 [Abstract] [Full Text] [Related] Page: [Next] [New Search]