These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 29377742
1. Novel compound heterozygous mutation in the POC1B gene underlie peripheral cone dystrophy in a Chinese family. Jin X, Chen L, Wang D, Zhang Y, Chen Z, Huang H. Ophthalmic Genet; 2018 Jun; 39(3):300-306. PubMed ID: 29377742 [Abstract] [Full Text] [Related]
2. Phenotypical Characteristics of POC1B-Associated Retinopathy in Japanese Cohort: Cone Dystrophy With Normal Funduscopic Appearance. Kameya S, Fujinami K, Ueno S, Hayashi T, Kuniyoshi K, Ideta R, Kikuchi S, Kubota D, Yoshitake K, Katagiri S, Sakuramoto H, Kominami T, Terasaki H, Yang L, Fujinami-Yokokawa Y, Liu X, Arno G, Pontikos N, Miyake Y, Iwata T, Tsunoda K, Japan Eye Genetics Consortium. Invest Ophthalmol Vis Sci; 2019 Aug 01; 60(10):3432-3446. PubMed ID: 31390656 [Abstract] [Full Text] [Related]
3. Novel recessive cone-rod dystrophy caused by POC1B mutation. Durlu YK, Köroğlu Ç, Tolun A. JAMA Ophthalmol; 2014 Oct 01; 132(10):1185-91. PubMed ID: 24945461 [Abstract] [Full Text] [Related]
4. A homozygous POC1B variant causes recessive cone-rod dystrophy. Peturson AC, Noel NCL, MacDonald IM. Ophthalmic Genet; 2021 Jun 01; 42(3):349-353. PubMed ID: 33657974 [Abstract] [Full Text] [Related]
5. GUCY2D mutations in a Chinese cohort with autosomal dominant cone or cone-rod dystrophies. Jiang F, Xu K, Zhang X, Xie Y, Bai F, Li Y. Doc Ophthalmol; 2015 Oct 01; 131(2):105-14. PubMed ID: 26298565 [Abstract] [Full Text] [Related]
6. Retinitis pigmentosa and bilateral cystoid macular oedema in a patient heterozygous for the RIM1 mutation previously associated with cone-rod dystrophy 7. Warwick AN, Shawkat F, Lotery AJ. Ophthalmic Genet; 2017 Oct 01; 38(2):178-182. PubMed ID: 27176872 [Abstract] [Full Text] [Related]
7. A mild form of POC1B-associated retinal dystrophy with relatively preserved cone system function. Hayashi T, Mizobuchi K, Kameya S, Ueno S, Matsuura T, Nakano T. Doc Ophthalmol; 2023 Aug 01; 147(1):59-70. PubMed ID: 37227616 [Abstract] [Full Text] [Related]
8. Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy. Roosing S, Lamers IJ, de Vrieze E, van den Born LI, Lambertus S, Arts HH, POC1B Study Group, Peters TA, Hoyng CB, Kremer H, Hetterschijt L, Letteboer SJ, van Wijk E, Roepman R, den Hollander AI, Cremers FP. Am J Hum Genet; 2014 Aug 07; 95(2):131-42. PubMed ID: 25018096 [Abstract] [Full Text] [Related]
9. CEP290 Mutation Spectrum and Delineation of the Associated Phenotype in a Large German Cohort: A Monocentric Study. Feldhaus B, Weisschuh N, Nasser F, den Hollander AI, Cremers FPM, Zrenner E, Kohl S, Zobor D. Am J Ophthalmol; 2020 Mar 07; 211():142-150. PubMed ID: 31734136 [Abstract] [Full Text] [Related]
10. Case of cone dystrophy with normal fundus appearance associated with biallelic POC1B variants. Kominami A, Ueno S, Kominami T, Nakanishi A, Ito Y, Fujinami K, Tsunoda K, Hayashi T, Kikuchi S, Kameya S, Iwata T, Terasaki H. Ophthalmic Genet; 2018 Apr 07; 39(2):255-262. PubMed ID: 29220607 [Abstract] [Full Text] [Related]
11. Clinical Characteristics of POC1B-Associated Retinopathy and Assignment of Pathogenicity to Novel Deep Intronic and Non-Canonical Splice Site Variants. Weisschuh N, Mazzola P, Bertrand M, Haack TB, Wissinger B, Kohl S, Stingl K. Int J Mol Sci; 2021 May 20; 22(10):. PubMed ID: 34065499 [Abstract] [Full Text] [Related]
12. Cone dystrophy or macular dystrophy associated with novel autosomal dominant GUCA1A mutations. Manes G, Mamouni S, Hérald E, Richard AC, Sénéchal A, Aouad K, Bocquet B, Meunier I, Hamel CP. Mol Vis; 2017 May 20; 23():198-209. PubMed ID: 28442884 [Abstract] [Full Text] [Related]
13. Novel ABCA4 compound heterozygous mutations cause severe progressive autosomal recessive cone-rod dystrophy presenting as Stargardt disease. Xi Q, Li L, Traboulsi EI, Wang QK. Mol Vis; 2009 May 20; 15():638-45. PubMed ID: 19352439 [Abstract] [Full Text] [Related]
14. Identification of a novel RPGR mutation associated with X-linked cone-rod dystrophy in a Chinese family. Wang Y, Liu S, Zhai Y, Liu Y, Wan X, Wang W, Wang F, Sun X. BMC Ophthalmol; 2021 Nov 20; 21(1):401. PubMed ID: 34800980 [Abstract] [Full Text] [Related]
15. Phenotypic and genotypic features of POC1B-associated cone dystrophy. Alzahem TA, AlTheeb A, Ba-Abbad R. Ophthalmic Genet; 2024 Feb 20; 45(1):72-77. PubMed ID: 37246743 [Abstract] [Full Text] [Related]
16. Clinical and genetic findings of a Japanese patient with RP1-related autosomal recessive retinitis pigmentosa. Kurata K, Hosono K, Hotta Y. Doc Ophthalmol; 2018 Aug 20; 137(1):47-56. PubMed ID: 30027431 [Abstract] [Full Text] [Related]
17. Novel compound heterozygous EYS variants may be associated with arRP in a large Chinese pedigree. Wei C, Xiao T, Cheng J, Fu J, Zhou Q, Yang L, Lv H, Fu J. Biosci Rep; 2020 Jun 26; 40(6):. PubMed ID: 32436957 [Abstract] [Full Text] [Related]
18. CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family. Kubota D, Gocho K, Kikuchi S, Akeo K, Miura M, Yamaki K, Takahashi H, Kameya S. Ophthalmic Genet; 2018 Aug 26; 39(4):500-507. PubMed ID: 29718797 [Abstract] [Full Text] [Related]
19. A rare case of RGR/CDHR1 haplotype identified in Bulgarian patient with cone-rod dystrophy. Mermeklieva E, Kamenarova K, Mihova K, Shakola F, Kaneva R. Ophthalmic Genet; 2021 Dec 26; 42(6):747-752. PubMed ID: 34229535 [Abstract] [Full Text] [Related]
20. Bardet-Biedl syndrome-7 (BBS7) shows treatment potential and a cone-rod dystrophy phenotype that recapitulates the non-human primate model. Aleman TS, O'Neil EC, O'Connor K, Jiang YY, Aleman IA, Bennett J, Morgan JIW, Toussaint BW. Ophthalmic Genet; 2021 Jun 26; 42(3):252-265. PubMed ID: 33729075 [Abstract] [Full Text] [Related] Page: [Next] [New Search]