These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


275 related items for PubMed ID: 29389248

  • 1. Role of gp130 in basal and exercise-trained skeletal muscle mitochondrial quality control.
    Fix DK, Hardee JP, Gao S, VanderVeen BN, Velázquez KT, Carson JA.
    J Appl Physiol (1985); 2018 Jun 01; 124(6):1456-1470. PubMed ID: 29389248
    [Abstract] [Full Text] [Related]

  • 2. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW, Erlich AT, Hood DA.
    Skelet Muscle; 2018 Mar 17; 8(1):10. PubMed ID: 29549884
    [Abstract] [Full Text] [Related]

  • 3. Regulation of Skeletal Muscle DRP-1 and FIS-1 Protein Expression by IL-6 Signaling.
    Fix DK, VanderVeen BN, Counts BR, Carson JA.
    Oxid Med Cell Longev; 2019 Mar 17; 2019():8908457. PubMed ID: 30918582
    [Abstract] [Full Text] [Related]

  • 4. Parkin is required for exercise-induced mitophagy in muscle: impact of aging.
    Chen CCW, Erlich AT, Crilly MJ, Hood DA.
    Am J Physiol Endocrinol Metab; 2018 Sep 01; 315(3):E404-E415. PubMed ID: 29812989
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle.
    Li L, Mühlfeld C, Niemann B, Pan R, Li R, Hilfiker-Kleiner D, Chen Y, Rohrbach S.
    Basic Res Cardiol; 2011 Nov 01; 106(6):1221-34. PubMed ID: 21874557
    [Abstract] [Full Text] [Related]

  • 10. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner.
    Halling JF, Ringholm S, Olesen J, Prats C, Pilegaard H.
    Exp Gerontol; 2017 Oct 01; 96():1-6. PubMed ID: 28577890
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6.
    VanderVeen BN, Fix DK, Montalvo RN, Counts BR, Smuder AJ, Murphy EA, Koh HJ, Carson JA.
    Exp Physiol; 2019 Mar 01; 104(3):385-397. PubMed ID: 30576589
    [Abstract] [Full Text] [Related]

  • 15. The role of TFE3 in mediating skeletal muscle mitochondrial adaptations to exercise training.
    Wong JC, Oliveira AN, Khemraj P, Hood DA.
    J Appl Physiol (1985); 2024 Feb 01; 136(2):262-273. PubMed ID: 38095014
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
    Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JF, Richter EA.
    Am J Physiol Endocrinol Metab; 2007 Jan 01; 292(1):E331-9. PubMed ID: 16954334
    [Abstract] [Full Text] [Related]

  • 19. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations.
    Kim Y, Hood DA.
    Physiol Rep; 2017 Jul 01; 5(14):. PubMed ID: 28720712
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.