These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 29389982
41. Artificial Intelligence Techniques in Grapevine Research: A Comparative Study with an Extensive Review of Datasets, Diseases, and Techniques Evaluation. Gatou P, Tsiara X, Spitalas A, Sioutas S, Vonitsanos G. Sensors (Basel); 2024 Sep 25; 24(19):. PubMed ID: 39409251 [Abstract] [Full Text] [Related]
42. Can Grapevine Leaf Water Potential Be Modelled from Physiological and Meteorological Variables? A Machine Learning Approach. Damásio M, Barbosa M, Deus J, Fernandes E, Leitão A, Albino L, Fonseca F, Silvestre J. Plants (Basel); 2023 Dec 12; 12(24):. PubMed ID: 38140469 [Abstract] [Full Text] [Related]
43. Effect of irrigation regime on anthocyanin content and antioxidant activity of Vitis vinifera L. cv. Syrah grapes under semiarid conditions. Kyraleou M, Koundouras S, Kallithraka S, Theodorou N, Proxenia N, Kotseridis Y. J Sci Food Agric; 2016 Feb 12; 96(3):988-96. PubMed ID: 25778286 [Abstract] [Full Text] [Related]
44. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Mazzia V, Comba L, Khaliq A, Chiaberge M, Gay P. Sensors (Basel); 2020 Apr 29; 20(9):. PubMed ID: 32365636 [Abstract] [Full Text] [Related]
45. The potential of the spectral 'water balance index' (WABI) for crop irrigation scheduling. Rapaport T, Hochberg U, Cochavi A, Karnieli A, Rachmilevitch S. New Phytol; 2017 Nov 29; 216(3):741-757. PubMed ID: 28795772 [Abstract] [Full Text] [Related]
46. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Poblete T, Ortega-Farías S, Moreno MA, Bardeen M. Sensors (Basel); 2017 Oct 30; 17(11):. PubMed ID: 29084169 [Abstract] [Full Text] [Related]
47. Spatial Variability of Soil and Plant Water Status and Their Cascading Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Yu R, Brillante L, Martínez-Lüscher J, Kurtural SK. Front Plant Sci; 2020 Oct 30; 11():790. PubMed ID: 32655596 [Abstract] [Full Text] [Related]
48. Strategies in vineyard establishment to face global warming in viticulture: a mini review. Gutiérrez-Gamboa G, Zheng W, Martínez de Toda F. J Sci Food Agric; 2021 Mar 15; 101(4):1261-1269. PubMed ID: 32914423 [Abstract] [Full Text] [Related]
49. Mitigating Heat Wave and Exposure Damage to "Cabernet Sauvignon" Wine Grape With Partial Shading Under Two Irrigation Amounts. Martínez-Lüscher J, Chen CCL, Brillante L, Kurtural SK. Front Plant Sci; 2020 Mar 15; 11():579192. PubMed ID: 33240297 [Abstract] [Full Text] [Related]
50. Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. Raza SE, Smith HK, Clarkson GJ, Taylor G, Thompson AJ, Clarkson J, Rajpoot NM. PLoS One; 2014 Mar 15; 9(6):e97612. PubMed ID: 24892284 [Abstract] [Full Text] [Related]
51. Grapevine trunk diseases under thermal and water stresses. Songy A, Fernandez O, Clément C, Larignon P, Fontaine F. Planta; 2019 Jun 15; 249(6):1655-1679. PubMed ID: 30805725 [Abstract] [Full Text] [Related]
52. Soil management affects carbon and nitrogen concentrations and stable isotope ratios in vine products. Spangenberg JE, Zufferey V. Sci Total Environ; 2023 May 15; 873():162410. PubMed ID: 36842594 [Abstract] [Full Text] [Related]
53. MECS-VINE®: A New Proximal Sensor for Segmented Mapping of Vigor and Yield Parameters on Vineyard Rows. Gatti M, Dosso P, Maurino M, Merli MC, Bernizzoni F, José Pirez F, Platè B, Bertuzzi GC, Poni S. Sensors (Basel); 2016 Nov 27; 16(12):. PubMed ID: 27898049 [Abstract] [Full Text] [Related]
54. Determination of Sugars and Acids in Grape Must Using Miniaturized Near-Infrared Spectroscopy. Cornehl L, Krause J, Zheng X, Gauweiler P, Schwander F, Töpfer R, Gruna R, Kicherer A. Sensors (Basel); 2023 Jun 02; 23(11):. PubMed ID: 37300013 [Abstract] [Full Text] [Related]
55. Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system. Wang L, Miao Y, Han Y, Li H, Zhang M, Peng C. Front Plant Sci; 2022 Jun 02; 13():1104390. PubMed ID: 36762177 [Abstract] [Full Text] [Related]
56. Terrain Characterization via Machine vs. Deep Learning Using Remote Sensing. Ewing J, Oommen T, Thomas J, Kasaragod A, Dobson R, Brooks C, Jayakumar P, Cole M, Ersal T. Sensors (Basel); 2023 Jun 11; 23(12):. PubMed ID: 37420672 [Abstract] [Full Text] [Related]
57. Proximal Sensing of Soil Electrical Conductivity Provides a Link to Soil-Plant Water Relationships and Supports the Identification of Plant Water Status Zones in Vineyards. Yu R, Kurtural SK. Front Plant Sci; 2020 Jun 11; 11():244. PubMed ID: 32218792 [Abstract] [Full Text] [Related]
58. Constructing a framework for risk analyses of climate change effects on the water budget of differently sloped vineyards with a numeric simulation using the Monte Carlo method coupled to a water balance model. Hofmann M, Lux R, Schultz HR. Front Plant Sci; 2014 Jun 11; 5():645. PubMed ID: 25540646 [Abstract] [Full Text] [Related]
59. Robust machine learning algorithms for predicting coastal water quality index. Uddin MG, Nash S, Mahammad Diganta MT, Rahman A, Olbert AI. J Environ Manage; 2022 Nov 01; 321():115923. PubMed ID: 35988401 [Abstract] [Full Text] [Related]
60. Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions. Diago MP, Correa C, Millán B, Barreiro P, Valero C, Tardaguila J. Sensors (Basel); 2012 Dec 12; 12(12):16988-7006. PubMed ID: 23235443 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]