These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
428 related items for PubMed ID: 29403008
21. Lotus SHAGGY-like kinase 1 is required to suppress nodulation in Lotus japonicus. Garagounis C, Tsikou D, Plitsi PK, Psarrakou IS, Avramidou M, Stedel C, Anagnostou M, Georgopoulou ME, Papadopoulou KK. Plant J; 2019 Apr; 98(2):228-242. PubMed ID: 30570783 [Abstract] [Full Text] [Related]
22. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Soyano T, Shimoda Y, Kawaguchi M, Hayashi M. Science; 2019 Nov 22; 366(6468):1021-1023. PubMed ID: 31754003 [Abstract] [Full Text] [Related]
23. The Phaseolus vulgaris Receptor-Like Kinase PvFER1 and the Small Peptides PvRALF1 and PvRALF6 Regulate Nodule Number as a Function of Nitrate Availability. Solís-Miranda J, Juárez-Verdayes MA, Nava N, Rosas P, Leija-Salas A, Cárdenas L, Quinto C. Int J Mol Sci; 2023 Mar 09; 24(6):. PubMed ID: 36982308 [Abstract] [Full Text] [Related]
24. A Lotus japonicus mutant defective in nitrate uptake is also affected in the nitrate response to nodulation. Pal'ove-Balang P, García-Calderón M, Pérez-Delgado CM, Pavlovkin J, Betti M, Márquez AJ. Plant Biol (Stuttg); 2015 Jan 09; 17(1):16-25. PubMed ID: 24673996 [Abstract] [Full Text] [Related]
25. Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus. Okamoto S, Kawaguchi M. Plant Signal Behav; 2015 Jan 09; 10(5):e1000138. PubMed ID: 26039467 [Abstract] [Full Text] [Related]
26. Grafting analysis indicates that malfunction of TRICOT in the root causes a nodulation-deficient phenotype in Lotus japonicus. Suzaki T, Kawaguchi M. Plant Signal Behav; 2013 Mar 09; 8(3):e23497. PubMed ID: 23333956 [Abstract] [Full Text] [Related]
27. The Medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number. Ivanovici A, Laffont C, Larrainzar E, Patel N, Winning CS, Lee HC, Imin N, Frugier F, Djordjevic MA. Plant Physiol; 2023 Mar 17; 191(3):2012-2026. PubMed ID: 36653329 [Abstract] [Full Text] [Related]
28. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Kumagai H, Hakoyama T, Umehara Y, Sato S, Kaneko T, Tabata S, Kouchi H. Plant Physiol; 2007 Mar 17; 143(3):1293-305. PubMed ID: 17277093 [Abstract] [Full Text] [Related]
29. A pathogenesis-related protein, PRP1, negatively regulates root nodule symbiosis in Lotus japonicus. Li H, Ou Y, Huang K, Zhang Z, Cao Y, Zhu H. J Exp Bot; 2024 Jun 07; 75(11):3542-3556. PubMed ID: 38457346 [Abstract] [Full Text] [Related]
30. Transcriptional regulation of NIN expression by IPN2 is required for root nodule symbiosis in Lotus japonicus. Xiao A, Yu H, Fan Y, Kang H, Ren Y, Huang X, Gao X, Wang C, Zhang Z, Zhu H, Cao Y. New Phytol; 2020 Jul 07; 227(2):513-528. PubMed ID: 32187696 [Abstract] [Full Text] [Related]
31. Evolution of NIN and NIN-like Genes in Relation to Nodule Symbiosis. Liu J, Bisseling T. Genes (Basel); 2020 Jul 11; 11(7):. PubMed ID: 32664480 [Abstract] [Full Text] [Related]
32. plenty, a novel hypernodulation mutant in Lotus japonicus. Yoshida C, Funayama-Noguchi S, Kawaguchi M. Plant Cell Physiol; 2010 Sep 11; 51(9):1425-35. PubMed ID: 20732950 [Abstract] [Full Text] [Related]
33. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Suzaki T, Yoro E, Kawaguchi M. Int Rev Cell Mol Biol; 2015 Sep 11; 316():111-58. PubMed ID: 25805123 [Abstract] [Full Text] [Related]
34. CRISPR/Cas9-Mediated Knock-Out of the MtCLE35 Gene Highlights Its Key Role in the Control of Symbiotic Nodule Numbers under High-Nitrate Conditions. Lebedeva MA, Dobychkina DA, Lutova LA. Int J Mol Sci; 2023 Nov 27; 24(23):. PubMed ID: 38069142 [Abstract] [Full Text] [Related]
35. NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host Arabidopsis thaliana. Hernández-Reyes C, Lichtenberg E, Keller J, Delaux PM, Ott T, Schenk ST. Mol Plant Microbe Interact; 2022 Mar 27; 35(3):230-243. PubMed ID: 34813707 [Abstract] [Full Text] [Related]
36. A Lotus japonicus Cochaperone Protein Interacts With the Ubiquitin-Like Domain Protein CIP73 and Plays a Negative Regulatory Role in Nodulation. Kang H, Xiao A, Huang X, Gao X, Yu H, He X, Zhu H, Hong Z, Zhang Z. Mol Plant Microbe Interact; 2015 May 27; 28(5):534-45. PubMed ID: 25761207 [Abstract] [Full Text] [Related]
37. A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus. Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K. Mol Plant Microbe Interact; 2016 Jul 27; 29(7):584-92. PubMed ID: 27183039 [Abstract] [Full Text] [Related]
38. Never too many? How legumes control nodule numbers. Mortier V, Holsters M, Goormachtig S. Plant Cell Environ; 2012 Feb 27; 35(2):245-58. PubMed ID: 21819415 [Abstract] [Full Text] [Related]
39. A Lotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation. Tsikou D, Ramirez EE, Psarrakou IS, Wong JE, Jensen DB, Isono E, Radutoiu S, Papadopoulou KK. BMC Plant Biol; 2018 Oct 03; 18(1):217. PubMed ID: 30285618 [Abstract] [Full Text] [Related]