These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


764 related items for PubMed ID: 29412943

  • 1. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.
    Ni J, Yang W, Wang Q, Luo F, Guo L, Qiu B, Lin Z, Yang H.
    Biosens Bioelectron; 2018 May 15; 105():182-187. PubMed ID: 29412943
    [Abstract] [Full Text] [Related]

  • 2. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor.
    Tan Y, Wei X, Zhang Y, Wang P, Qiu B, Guo L, Lin Z, Yang HH.
    Anal Chem; 2015 Dec 01; 87(23):11826-31. PubMed ID: 26542113
    [Abstract] [Full Text] [Related]

  • 3. Signal-on electrochemiluminescence aptasensor for bisphenol A based on hybridization chain reaction and electrically heated electrode.
    Zhang H, Luo F, Wang P, Guo L, Qiu B, Lin Z.
    Biosens Bioelectron; 2019 Mar 15; 129():36-41. PubMed ID: 30682687
    [Abstract] [Full Text] [Related]

  • 4. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification.
    Yuan Y, Wei S, Liu G, Xie S, Chai Y, Yuan R.
    Anal Chim Acta; 2014 Feb 06; 811():70-5. PubMed ID: 24456596
    [Abstract] [Full Text] [Related]

  • 5. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification.
    Yang L, Zhang Y, Li R, Lin C, Guo L, Qiu B, Lin Z, Chen G.
    Biosens Bioelectron; 2015 Aug 15; 70():268-74. PubMed ID: 25835519
    [Abstract] [Full Text] [Related]

  • 6. An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated [Formula: see text] probe.
    Wang XY, Gao A, Lu CC, He XW, Yin XB.
    Biosens Bioelectron; 2013 Oct 15; 48():120-5. PubMed ID: 23665577
    [Abstract] [Full Text] [Related]

  • 7. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A.
    Wang Y, Ning G, Wu Y, Wu S, Zeng B, Liu G, He X, Wang K.
    Biosens Bioelectron; 2019 Jan 15; 124-125():82-88. PubMed ID: 30343160
    [Abstract] [Full Text] [Related]

  • 8. Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification.
    Song C, Hong W, Zhang X, Lu Y.
    Analyst; 2018 Apr 16; 143(8):1829-1834. PubMed ID: 29594306
    [Abstract] [Full Text] [Related]

  • 9. Supersandwich-type electrochemiluminescenct aptasensor based on Ru(phen)3(2+) functionalized hollow gold nanoparticles as signal-amplifying tags.
    Gui G, Zhuo Y, Chai YQ, Liao N, Zhao M, Han J, Zhu Q, Yuan R, Xiang Y.
    Biosens Bioelectron; 2013 Sep 15; 47():524-9. PubMed ID: 23643946
    [Abstract] [Full Text] [Related]

  • 10. Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A.
    Ye S, Ye R, Shi Y, Qiu B, Guo L, Huang D, Lin Z, Chen G.
    Anal Bioanal Chem; 2017 Dec 15; 409(30):7145-7151. PubMed ID: 29067479
    [Abstract] [Full Text] [Related]

  • 11. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL, Zhang YF, Sun GP, Wang XN, Tang D.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):659-665. PubMed ID: 26707001
    [Abstract] [Full Text] [Related]

  • 12. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling.
    Tong P, Zhang L, Xu JJ, Chen HY.
    Biosens Bioelectron; 2011 Nov 15; 29(1):97-101. PubMed ID: 21855315
    [Abstract] [Full Text] [Related]

  • 13. An electrochemical aptasensor based on PEI-C3N4/AuNWs for determination of chloramphenicol via exonuclease-assisted signal amplification.
    He B, Wang S.
    Mikrochim Acta; 2021 Jan 06; 188(1):22. PubMed ID: 33404928
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Homogeneous Electrochemiluminescence Biosensor for the Detection of RNase A Activity and Its Inhibitor.
    Ni J, Lin H, Yang W, Liao Y, Wang Q, Luo F, Guo L, Qiu B, Lin Z.
    Anal Chem; 2019 Nov 19; 91(22):14751-14756. PubMed ID: 31651147
    [Abstract] [Full Text] [Related]

  • 18. Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin.
    Jin G, Wang C, Yang L, Li X, Guo L, Qiu B, Lin Z, Chen G.
    Biosens Bioelectron; 2015 Jan 15; 63():166-171. PubMed ID: 25086328
    [Abstract] [Full Text] [Related]

  • 19. Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of Ochratoxin A.
    Gao J, Chen Z, Mao L, Zhang W, Wen W, Zhang X, Wang S.
    Talanta; 2019 Jul 01; 199():178-183. PubMed ID: 30952243
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 39.