These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


102 related items for PubMed ID: 2942189

  • 21. Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity.
    Davis FB, Smith TJ, Deziel MR, Davis PJ, Blas SD.
    J Clin Invest; 1990 Jun; 85(6):1999-2003. PubMed ID: 2161434
    [Abstract] [Full Text] [Related]

  • 22. Donor age-dependent decline in response of human red cell Ca2+-ATPase activity to thyroid hormone in vitro.
    Davis PJ, Davis FB, Blas SD, Schoenl M, Edwards L.
    J Clin Endocrinol Metab; 1987 May; 64(5):921-5. PubMed ID: 3031121
    [Abstract] [Full Text] [Related]

  • 23. Polyamine transport regulation by calcium and calmodulin: role of Ca(2+)-ATPase.
    Khan NA, Sezan A, Quemener V, Moulinoux JP.
    J Cell Physiol; 1993 Dec; 157(3):493-501. PubMed ID: 8253860
    [Abstract] [Full Text] [Related]

  • 24. Endogenous calmodulin and Ca2+-ATPase activity of human erythrocyte membranes.
    Wetzker R, Klinger R, Frunder H.
    Biomed Biochim Acta; 1983 Dec; 42(11-12):S63-6. PubMed ID: 6232926
    [Abstract] [Full Text] [Related]

  • 25. Analysis of the all or nothing behaviour of Ca-dependent K channels in one-step inside-out vesicles from human red cell membranes.
    Alvarez J, García-Sancho J, Herreros B.
    Biochim Biophys Acta; 1986 Jul 10; 859(1):56-60. PubMed ID: 2424505
    [Abstract] [Full Text] [Related]

  • 26. Red blood cell calmodulin and Ca2+ pump ATPase: preliminary results of a species comparison.
    Vincenzi FF.
    Prog Clin Biol Res; 1981 Jul 10; 55():363-83. PubMed ID: 6117080
    [Abstract] [Full Text] [Related]

  • 27. Calmodulin activation of red blood cell (Ca2+ + Mg2+)-ATPase and its antagonism by phenothiazines.
    Raess BU, Vincenzi FF.
    Mol Pharmacol; 1980 Sep 10; 18(2):253-8. PubMed ID: 6158670
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. A study to see whether phosphatidylserine, partial proteolysis and EGTA substitute for calmodulin during activation of the Ca2+-ATPase from red cell membranes by ATP.
    Rossi JP, Rega AF.
    Biochim Biophys Acta; 1989 Jul 06; 996(3):153-9. PubMed ID: 2526658
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. An estimate of the number of Ca2+-dependent K+ channels in the human red cell.
    Alvarez J, García-Sancho J.
    Biochim Biophys Acta; 1987 Oct 16; 903(3):543-6. PubMed ID: 2444260
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Purification, characterization, and reconstitution of the Ca2+-transport system (high-affinity Ca2+, Mg2+-ATPase) of the human erythrocyte membrane.
    Gietzen K, Konrad R, Tejcka M, Fleischer S, Wolf HU.
    Acta Biol Med Ger; 1981 Oct 16; 40(4-5):443-56. PubMed ID: 6118989
    [Abstract] [Full Text] [Related]

  • 37. Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles.
    Sarkadi B, Szász I, Gárdos G.
    Biochim Biophys Acta; 1980 May 23; 598(2):326-38. PubMed ID: 6769484
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.