These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


448 related items for PubMed ID: 29427885

  • 21. Strand Displacement-Induced Enzyme-Free Amplification for Label-Free and Separation-Free Ultrasensitive Atomic Fluorescence Spectrometric Detection of Nucleic Acids and Proteins.
    Chen P, Wu P, Zhang Y, Chen J, Jiang X, Zheng C, Hou X.
    Anal Chem; 2016 Dec 20; 88(24):12386-12392. PubMed ID: 28193041
    [Abstract] [Full Text] [Related]

  • 22. A signal amplification strategy and sensing application using single gold nanoelectrodes.
    Wang D, Hua H, Tang H, Yang C, Chen W, Li Y.
    Analyst; 2018 Dec 17; 144(1):310-316. PubMed ID: 30406238
    [Abstract] [Full Text] [Related]

  • 23. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.
    Bi S, Jia X, Ye J, Dong Y.
    Biosens Bioelectron; 2015 Sep 15; 71():427-433. PubMed ID: 25950939
    [Abstract] [Full Text] [Related]

  • 24. Rational construction of a DNA nanomachine for HIV nucleic acid ultrasensitive sensing.
    Zheng J, Ji X, Du M, Tian S, He Z.
    Nanoscale; 2018 Sep 20; 10(36):17206-17211. PubMed ID: 30191238
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q, Lv Y, Cui H, Gu X, Zhang S, Liu J.
    Anal Chim Acta; 2015 Jan 26; 856():103-9. PubMed ID: 25542364
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification.
    Wang B, Zhou X, Yao D, Sun X, He M, Wang X, Yin X, Liang H.
    Chem Commun (Camb); 2017 Oct 03; 53(79):10950-10953. PubMed ID: 28933793
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification.
    Qin C, Wen W, Zhang X, Gu H, Wang S.
    Analyst; 2015 Nov 21; 140(22):7710-7. PubMed ID: 26451394
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH, Seo YJ.
    Anal Chim Acta; 2018 Jan 25; 999():155-160. PubMed ID: 29254567
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein.
    Huang Y, Chen J, Zhao S, Shi M, Chen ZF, Liang H.
    Anal Chem; 2013 May 07; 85(9):4423-30. PubMed ID: 23534943
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.