These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 29431838

  • 1. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints.
    Liyanage T, Rael A, Shaffer S, Zaidi S, Goodpaster JV, Sardar R.
    Analyst; 2018 Apr 30; 143(9):2012-2022. PubMed ID: 29431838
    [Abstract] [Full Text] [Related]

  • 2. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma.
    Liyanage T, Masterson AN, Hati S, Ren G, Manicke NE, Rusyniak DE, Sardar R.
    Analyst; 2020 Nov 23; 145(23):7662-7672. PubMed ID: 32969415
    [Abstract] [Full Text] [Related]

  • 3. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN, Hati S, Ren G, Liyanage T, Manicke NE, Goodpaster JV, Sardar R.
    Anal Chem; 2021 Feb 02; 93(4):2578-2588. PubMed ID: 33432809
    [Abstract] [Full Text] [Related]

  • 4. Rapid fabrication of flexible and transparent gold nanorods/poly (methyl methacrylate) membrane substrate for SERS nanosensor application.
    Yang N, You TT, Gao YK, Zhang CM, Yin PG.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Sep 05; 202():376-381. PubMed ID: 29803976
    [Abstract] [Full Text] [Related]

  • 5. Fabrication of SERS swab for direct detection of trace explosives in fingerprints.
    Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21931-7. PubMed ID: 25455731
    [Abstract] [Full Text] [Related]

  • 6. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.
    Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Käll M.
    Anal Chim Acta; 2015 Sep 17; 893():1-13. PubMed ID: 26398417
    [Abstract] [Full Text] [Related]

  • 7. Surface segregation of rigid polyarylene ether amidoxime on polyurethane nanofiber into hierarchical membranes as substrate of flexible SERS nanosensor for sulfamethoxazole detection.
    Fan Z, Ran Q, Li Y, Xu X, Zheng L, Liu X, Jia K.
    Talanta; 2024 Aug 15; 276():126166. PubMed ID: 38714011
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H, Du M, Zhang M, Wang P, Bao S, Zou M, Fu Y, Yao J.
    Biosens Bioelectron; 2014 Apr 15; 54():91-101. PubMed ID: 24252765
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S, Ahn M, Kim J.
    Anal Chim Acta; 2013 May 24; 779():1-7. PubMed ID: 23663665
    [Abstract] [Full Text] [Related]

  • 13. Selective and sensitive detection of intracellular O2(•-) using Au NPs/cytochrome c as SERS nanosensors.
    Qu LL, Li DW, Qin LX, Mu J, Fossey JS, Long YT.
    Anal Chem; 2013 Oct 15; 85(20):9549-55. PubMed ID: 24047198
    [Abstract] [Full Text] [Related]

  • 14. Vapor phase detection of explosives by surface enhanced Raman scattering under ambient conditions with metal nanogap structures.
    Adhikari S, Noh D, Kim M, Ahn D, Jang Y, Oh E, Lee D.
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr 15; 311():123996. PubMed ID: 38350410
    [Abstract] [Full Text] [Related]

  • 15. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.
    Park S, Lee J, Ko H.
    ACS Appl Mater Interfaces; 2017 Dec 20; 9(50):44088-44095. PubMed ID: 29172436
    [Abstract] [Full Text] [Related]

  • 16. Picosecond Laser-Ablated Nanoparticles Loaded Filter Paper for SERS-Based Trace Detection of Thiram, 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX), and Nile Blue.
    Byram C, Rathod J, Moram SSB, Mangababu A, Soma VR.
    Nanomaterials (Basel); 2022 Jun 22; 12(13):. PubMed ID: 35807985
    [Abstract] [Full Text] [Related]

  • 17. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective.
    Adegoke O, Nic Daeid N.
    Emerg Top Life Sci; 2021 Sep 24; 5(3):367-379. PubMed ID: 33960382
    [Abstract] [Full Text] [Related]

  • 18. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.
    He X, Wang H, Li Z, Chen D, Liu J, Zhang Q.
    Nanoscale; 2015 May 14; 7(18):8619-26. PubMed ID: 25899553
    [Abstract] [Full Text] [Related]

  • 19. Flexible porous aerogels decorated with Ag nanoparticles as an effective SERS substrate for label-free trace explosives detection.
    Liu W, Song Z, Zhao Y, Liu Y, He X, Cui S.
    Anal Methods; 2020 Aug 27; 12(33):4123-4129. PubMed ID: 32766632
    [Abstract] [Full Text] [Related]

  • 20. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection.
    Wang Y, Jin Y, Xiao X, Zhang T, Yang H, Zhao Y, Wang J, Jiang K, Fan S, Li Q.
    Nanoscale; 2018 Aug 16; 10(32):15195-15204. PubMed ID: 29845168
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.