These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
297 related items for PubMed ID: 29439982
1. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea. Xu Z, Liu Y, Ye BC. Appl Environ Microbiol; 2018 Apr 15; 84(8):. PubMed ID: 29439982 [Abstract] [Full Text] [Related]
2. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea. Xu Z, Wang M, Ye BC. J Bacteriol; 2017 Oct 15; 199(20):. PubMed ID: 28760847 [Abstract] [Full Text] [Related]
4. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea. Wu H, Chen M, Mao Y, Li W, Liu J, Huang X, Zhou Y, Ye BC, Zhang L, Weaver DT, Zhang B. Microb Cell Fact; 2014 Nov 13; 13():158. PubMed ID: 25391994 [Abstract] [Full Text] [Related]
7. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. Chen C, Hong M, Chu J, Huang M, Ouyang L, Tian X, Zhuang Y. Bioprocess Biosyst Eng; 2017 Feb 13; 40(2):201-209. PubMed ID: 27709326 [Abstract] [Full Text] [Related]
8. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea. Wu P, Pan H, Zhang C, Wu H, Yuan L, Huang X, Zhou Y, Ye BC, Weaver DT, Zhang L, Zhang B. J Ind Microbiol Biotechnol; 2014 Jul 13; 41(7):1159-67. PubMed ID: 24793123 [Abstract] [Full Text] [Related]
10. 13C-assisted metabolomics analysis reveals the positive correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size in Saccharopolyspora erythraea. Hong M, Mou H, Liu X, Huang M, Chu J. Bioprocess Biosyst Eng; 2017 Sep 13; 40(9):1337-1348. PubMed ID: 28567527 [Abstract] [Full Text] [Related]
11. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM. Metab Eng; 2007 May 13; 9(3):293-303. PubMed ID: 17482861 [Abstract] [Full Text] [Related]
12. Phosphate regulator PhoP directly and indirectly controls transcription of the erythromycin biosynthesis genes in Saccharopolyspora erythraea. Xu Y, You D, Yao LL, Chu X, Ye BC. Microb Cell Fact; 2019 Nov 27; 18(1):206. PubMed ID: 31775761 [Abstract] [Full Text] [Related]
13. Two amino acids missing of MtrA resulted in increased erythromycin level and altered phenotypes in Saccharopolyspora erythraea. Pan Q, Tong Y, Han YJ, Ye BC. Appl Microbiol Biotechnol; 2019 Jun 27; 103(11):4539-4548. PubMed ID: 30997553 [Abstract] [Full Text] [Related]
19. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Liao CH, Xu Y, Rigali S, Ye BC. Appl Microbiol Biotechnol; 2015 Dec 27; 99(23):10215-24. PubMed ID: 26272095 [Abstract] [Full Text] [Related]