These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 29478202

  • 1. Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F, Uchida S.
    Clin Exp Nephrol; 2018 Jun; 22(3):501-507. PubMed ID: 29478202
    [Abstract] [Full Text] [Related]

  • 2. Activation of AQP2 water channels by protein kinase A: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F.
    Clin Exp Nephrol; 2021 Oct; 25(10):1051-1056. PubMed ID: 34224008
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus.
    Olesen ET, Rützler MR, Moeller HB, Praetorius HA, Fenton RA.
    Proc Natl Acad Sci U S A; 2011 Aug 02; 108(31):12949-54. PubMed ID: 21768374
    [Abstract] [Full Text] [Related]

  • 5. Physiological insights into novel therapies for nephrogenic diabetes insipidus.
    Sands JM, Klein JD.
    Am J Physiol Renal Physiol; 2016 Dec 01; 311(6):F1149-F1152. PubMed ID: 27534996
    [Abstract] [Full Text] [Related]

  • 6. Regulation of aquaporin-2 trafficking.
    Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E.
    Handb Exp Pharmacol; 2009 Dec 01; (190):133-57. PubMed ID: 19096775
    [Abstract] [Full Text] [Related]

  • 7. Combination of secretin and fluvastatin ameliorates the polyuria associated with X-linked nephrogenic diabetes insipidus in mice.
    Procino G, Milano S, Carmosino M, Barbieri C, Nicoletti MC, Li JH, Wess J, Svelto M.
    Kidney Int; 2014 Jul 01; 86(1):127-38. PubMed ID: 24522493
    [Abstract] [Full Text] [Related]

  • 8. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway.
    Ando F, Sohara E, Morimoto T, Yui N, Nomura N, Kikuchi E, Takahashi D, Mori T, Vandewalle A, Rai T, Sasaki S, Kondo Y, Uchida S.
    Nat Commun; 2016 Nov 28; 7():13636. PubMed ID: 27892464
    [Abstract] [Full Text] [Related]

  • 9. Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus.
    Boone M, Kortenoeven M, Robben JH, Deen PM.
    Nephrol Dial Transplant; 2010 Jan 28; 25(1):48-54. PubMed ID: 19666909
    [Abstract] [Full Text] [Related]

  • 10. Updates and Perspectives on Aquaporin-2 and Water Balance Disorders.
    Noda Y, Sasaki S.
    Int J Mol Sci; 2021 Nov 30; 22(23):. PubMed ID: 34884753
    [Abstract] [Full Text] [Related]

  • 11. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts.
    Klein JD, Wang Y, Blount MA, Molina PA, LaRocque LM, Ruiz JA, Sands JM.
    Am J Physiol Renal Physiol; 2016 May 15; 310(10):F1008-12. PubMed ID: 26962099
    [Abstract] [Full Text] [Related]

  • 12. A mini-review of pharmacological strategies used to ameliorate polyuria associated with X-linked nephrogenic diabetes insipidus.
    Mortensen LA, Bistrup C, Jensen BL, Hinrichs GR.
    Am J Physiol Renal Physiol; 2020 Nov 01; 319(5):F746-F753. PubMed ID: 32924547
    [Abstract] [Full Text] [Related]

  • 13. Fluconazole Increases Osmotic Water Transport in Renal Collecting Duct through Effects on Aquaporin-2 Trafficking.
    Vukićević T, Hinze C, Baltzer S, Himmerkus N, Quintanova C, Zühlke K, Compton F, Ahlborn R, Dema A, Eichhorst J, Wiesner B, Bleich M, Schmidt-Ott KM, Klussmann E.
    J Am Soc Nephrol; 2019 May 01; 30(5):795-810. PubMed ID: 30988011
    [Abstract] [Full Text] [Related]

  • 14. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update.
    Milano S, Carmosino M, Gerbino A, Svelto M, Procino G.
    Int J Mol Sci; 2017 Nov 10; 18(11):. PubMed ID: 29125546
    [Abstract] [Full Text] [Related]

  • 15. Genetic deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus.
    Petrillo F, Chernyakov D, Esteva-Font C, Poulsen SB, Edemir B, Fenton RA.
    FASEB J; 2022 Nov 10; 36(11):e22583. PubMed ID: 36197017
    [Abstract] [Full Text] [Related]

  • 16. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation.
    Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S.
    Proc Natl Acad Sci U S A; 2006 Sep 19; 103(38):14217-22. PubMed ID: 16968783
    [Abstract] [Full Text] [Related]

  • 17. V2R mutations and nephrogenic diabetes insipidus.
    Bichet DG.
    Prog Mol Biol Transl Sci; 2009 Sep 19; 89():15-29. PubMed ID: 20374732
    [Abstract] [Full Text] [Related]

  • 18. Nephrogenic Diabetes Insipidus.
    Balla A, Hunyady L.
    Exp Suppl; 2019 Sep 19; 111():317-339. PubMed ID: 31588538
    [Abstract] [Full Text] [Related]

  • 19. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption.
    Cano-Peñalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M.
    FASEB J; 2014 Aug 19; 28(8):3645-59. PubMed ID: 24784577
    [Abstract] [Full Text] [Related]

  • 20. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.
    Zhang Y, Peti-Peterdi J, Müller CE, Carlson NG, Baqi Y, Strasburg DL, Heiney KM, Villanueva K, Kohan DE, Kishore BK.
    J Am Soc Nephrol; 2015 Dec 19; 26(12):2978-87. PubMed ID: 25855780
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.