These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 29480583

  • 1. Stress augments the rewarding memory of cocaine via the activation of brainstem-reward circuitry.
    Shinohara F, Asaoka Y, Kamii H, Minami M, Kaneda K.
    Addict Biol; 2019 May; 24(3):509-521. PubMed ID: 29480583
    [Abstract] [Full Text] [Related]

  • 2. Critical role of cholinergic transmission from the laterodorsal tegmental nucleus to the ventral tegmental area in cocaine-induced place preference.
    Shinohara F, Kihara Y, Ide S, Minami M, Kaneda K.
    Neuropharmacology; 2014 Apr; 79():573-9. PubMed ID: 24467849
    [Abstract] [Full Text] [Related]

  • 3. [Neural mechanisms underlying stress-induced enhancement of cocaine craving behaviors].
    Kaneda K, Deyama S, Li X, Zhang T, Sasase H.
    Nihon Yakurigaku Zasshi; 2020 Apr; 155(3):135-139. PubMed ID: 32378629
    [Abstract] [Full Text] [Related]

  • 4. Acute restraint stress augments the rewarding memory of cocaine through activation of α1 adrenoceptors in the medial prefrontal cortex of mice.
    Wada S, Yanagida J, Sasase H, Zhang T, Li X, Kamii H, Domoto M, Deyama S, Hinoi E, Yamanaka A, Nishitani N, Nagayasu K, Kaneko S, Minami M, Kaneda K.
    Neuropharmacology; 2020 Apr; 166():107968. PubMed ID: 32035731
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The Role of Dopaminergic Signaling in the Medial Prefrontal Cortex for the Expression of Cocaine-Induced Conditioned Place Preference in Rats.
    Shinohara F, Kamii H, Minami M, Kaneda K.
    Biol Pharm Bull; 2017 Apr; 40(11):1983-1989. PubMed ID: 29093348
    [Abstract] [Full Text] [Related]

  • 7. Role of 5-HT1A receptor-mediated serotonergic transmission in the medial prefrontal cortex in acute restraint stress-induced augmentation of rewarding memory of cocaine in mice.
    Chu J, Deyama S, Li X, Motono M, Otoda A, Saito A, Esaki H, Nishitani N, Kaneda K.
    Neurosci Lett; 2021 Jan 19; 743():135555. PubMed ID: 33352288
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.
    Li Y, Ge S, Li N, Chen L, Zhang S, Wang J, Wu H, Wang X, Wang X.
    Neuroscience; 2016 Feb 19; 315():45-69. PubMed ID: 26674058
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Chronic cocaine exposure induces noradrenergic modulation of inhibitory synaptic transmission to cholinergic neurons of the laterodorsal tegmental nucleus.
    Taoka N, Kamiizawa R, Wada S, Minami M, Kaneda K.
    Eur J Neurosci; 2016 Dec 19; 44(12):3035-3045. PubMed ID: 27646204
    [Abstract] [Full Text] [Related]

  • 13. Social defeat stress enhances the rewarding effects of cocaine through α1A adrenoceptors in the medial prefrontal cortex of mice.
    Saito A, Murata H, Niitani K, Nagasaki J, Otoda A, Chujo Y, Yanagida J, Nishitani N, Deyama S, Kaneda K.
    Neuropharmacology; 2024 Jan 01; 242():109757. PubMed ID: 37839511
    [Abstract] [Full Text] [Related]

  • 14. Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects.
    Pan B, Zhong P, Sun D, Liu QS.
    J Neurosci; 2011 Aug 03; 31(31):11244-55. PubMed ID: 21813685
    [Abstract] [Full Text] [Related]

  • 15. The contribution of neuroplasticity induced in cholinergic neurons of the laterodorsal tegmental nucleus to cocaine addiction.
    Kaneda K.
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2017 Feb 03; 37(1):1-7. PubMed ID: 30452815
    [Abstract] [Full Text] [Related]

  • 16. Intra-ventral tegmental area microinjections of urotensin II modulate the effects of cocaine.
    Mueller LE, Kausch MA, Markovic T, MacLaren DA, Dietz DM, Park J, Clark SD.
    Behav Brain Res; 2015 Feb 01; 278():271-9. PubMed ID: 25264578
    [Abstract] [Full Text] [Related]

  • 17. Glycogen synthase kinase-3β in the ventral tegmental area mediates diurnal variations in cocaine-induced conditioned place preference in rats.
    Li SX, Wei YM, Shi HS, Luo YX, Ding ZB, Xue YX, Lu L, Yu CX.
    Addict Biol; 2014 Nov 01; 19(6):996-1005. PubMed ID: 23750993
    [Abstract] [Full Text] [Related]

  • 18. Dopamine Neurotransmission in the Ventral Tegmental Area Promotes Active Forgetting of Cocaine-Associated Memory.
    Castillo Díaz F, Hernandez MA, Capellá T, Medina JH.
    Mol Neurobiol; 2019 Sep 01; 56(9):6206-6217. PubMed ID: 30739236
    [Abstract] [Full Text] [Related]

  • 19. Regulation of the ventral tegmental area by the bed nucleus of the stria terminalis is required for expression of cocaine preference.
    Sartor GC, Aston-Jones G.
    Eur J Neurosci; 2012 Dec 01; 36(11):3549-58. PubMed ID: 23039920
    [Abstract] [Full Text] [Related]

  • 20. Microinjections of a dopamine D1 receptor antagonist into the ventral tegmental area block the expression of cocaine conditioned place preference in rats.
    Galaj E, Manuszak M, Arastehmanesh D, Ranaldi R.
    Behav Brain Res; 2014 Oct 01; 272():279-85. PubMed ID: 25017572
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.