These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


393 related items for PubMed ID: 29486464

  • 1. Chromosome Rearrangements Caused by Double Monosomy in Wheat-Barley Group-7 Substitution Lines.
    Danilova TV, Friebe B, Gill BS, Poland J, Jackson E.
    Cytogenet Genome Res; 2018; 154(1):45-55. PubMed ID: 29486464
    [Abstract] [Full Text] [Related]

  • 2. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H.
    Taketa S, Awayama T, Ichii M, Sunakawa M, Kawahara T, Murai K.
    Genome; 2005 Feb; 48(1):115-24. PubMed ID: 15729403
    [Abstract] [Full Text] [Related]

  • 3. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.
    Fang Y, Yuan J, Wang Z, Wang H, Xiao J, Yang Z, Zhang R, Qi Z, Xu W, Hu L, Wang XE.
    J Genet Genomics; 2014 Aug 20; 41(8):439-47. PubMed ID: 25160976
    [Abstract] [Full Text] [Related]

  • 4. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae).
    Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS.
    Plant J; 2017 Oct 20; 92(2):317-330. PubMed ID: 28776783
    [Abstract] [Full Text] [Related]

  • 5. [Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H(1)Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines].
    Trubacheeva NV, Efremova TT, Badaeva ED, Kravtsova LA, Belova LI, Deviatkina EP, Pershina LA.
    Genetika; 2009 Dec 20; 45(12):1627-33. PubMed ID: 20198973
    [Abstract] [Full Text] [Related]

  • 6. [Specific features of fertility restoration in alloplasmic lines obtained based on hybridization of self-fertilized offspring of barley-wheat (Hordeum vulgare L. x Triticum aestivum L.) amphiploid with common wheat varieties Saratovskaya 29 and Pyrotrix 28].
    Pershina LA, Deviatkina EP, Trubacheeva NV, Kravtsova LA, Dobrovol'skaia OB.
    Genetika; 2012 Dec 20; 48(12):1372-9. PubMed ID: 23516898
    [Abstract] [Full Text] [Related]

  • 7. Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat.
    Shi F, Endo TR.
    Chromosoma; 2000 Dec 20; 109(5):358-63. PubMed ID: 11007495
    [Abstract] [Full Text] [Related]

  • 8. The gametocidal chromosome as a tool for chromosome manipulation in wheat.
    Endo TR.
    Chromosome Res; 2007 Dec 20; 15(1):67-75. PubMed ID: 17295127
    [Abstract] [Full Text] [Related]

  • 9. [Barley chromosome identification using genomic in situ hybridization in the genome of backcrossed progeny of barley-wheat amphiploids [H. geniculatum All. (2n = 28) x T. aestivum L. (2n = 42)] (2n = 70)].
    Numerova OM, Pershina LA, Salina EA, Shumnyĭ VK.
    Genetika; 2004 Sep 20; 40(9):1229-33. PubMed ID: 15559151
    [Abstract] [Full Text] [Related]

  • 10. Molecular Cytogenetic Analysis and Meiotic Pairing Behavior of Progenies Originating from a Hexaploid Triticale (×Triticosecale, Wittmack) and Bread Wheat (Triticum aestivum, L.) Cross.
    Aliyeva AJ, Farkas A, Aminov NK, Kruppa K, Molnár-Láng M, Türkösi E.
    Cytogenet Genome Res; 2020 Sep 20; 160(1):47-56. PubMed ID: 32172236
    [Abstract] [Full Text] [Related]

  • 11. [Molecular study and C-banding of chromosomes in common wheat alloplasmic lines obtained from the backcross progeny of barley-wheat hybrids Hordeum vulgare L. (2n = 14) x Triticum aestivum L. (2n = 42) and differing in fertility].
    Bil'danova LL, Badaeva ED, Pershina LA, Salina EA.
    Genetika; 2004 Dec 20; 40(12):1668-77. PubMed ID: 15648150
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content.
    Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, Cseh A.
    PLoS One; 2018 Dec 20; 13(11):e0206248. PubMed ID: 30395616
    [Abstract] [Full Text] [Related]

  • 15. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH.
    Prieto P, Ramírez MC, Ballesteros J, Cabrera A.
    Hereditas; 2001 Dec 20; 135(2-3):171-4. PubMed ID: 12152330
    [Abstract] [Full Text] [Related]

  • 16. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content.
    Danilova TV, Poland J, Friebe B.
    Theor Appl Genet; 2019 Nov 20; 132(11):3129-3141. PubMed ID: 31535163
    [Abstract] [Full Text] [Related]

  • 17. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) x winter barley (Hordeum vulgare).
    Molnár-Láng M, Linc G, Logojan A, Sutka J.
    Genome; 2000 Dec 20; 43(6):1045-54. PubMed ID: 11195337
    [Abstract] [Full Text] [Related]

  • 18. [Features of the formation of self-fertile euploid lines (2n = 42) by self-pollination of the 46-chromosome barley-wheat BC1 hybrid Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) x Triticum aestivum L. (2n = 42)].
    Pershina LA, Trubacheeva NV, Rakovtseva TS, Belova LI, Deviatkina EP, Kravtsova LA.
    Genetika; 2006 Dec 20; 42(12):1683-90. PubMed ID: 17326388
    [Abstract] [Full Text] [Related]

  • 19. Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines.
    Li S, Wang J, Wang K, Chen J, Wang K, Du L, Ni Z, Lin Z, Ye X.
    BMC Genomics; 2019 Apr 15; 20(1):289. PubMed ID: 30987602
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.