These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
978 related items for PubMed ID: 29490569
1. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S, Davaran S, Rahbarghazi R, Montaseri A, Salehi R, Ramazani A. J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [Abstract] [Full Text] [Related]
2. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications. Oroojalian F, Jahanafrooz Z, Chogan F, Rezayan AH, Malekzade E, Rezaei SJT, Nabid MR, Sahebkar A. J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319 [Abstract] [Full Text] [Related]
3. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM, Park K, Huh KM, Park KH. J Control Release; 2007 Dec 04; 124(1-2):51-9. PubMed ID: 17904679 [Abstract] [Full Text] [Related]
6. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering. Lee MY, Tsai WW, Chen HJ, Chen JP, Chen CH, Yeh WL, An J. Biomed Mater Eng; 2013 Dec 04; 23(6):533-43. PubMed ID: 24165555 [Abstract] [Full Text] [Related]
7. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Zhang J, Wang J, Zhang H, Lin J, Ge Z, Zou X. Biomed Mater; 2016 Jun 15; 11(3):035014. PubMed ID: 27305040 [Abstract] [Full Text] [Related]
8. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model. Chang CS, Yang CY, Hsiao HY, Chen L, Chu IM, Cheng MH, Tsao CH. Eur Cell Mater; 2018 Jun 21; 35():350-364. PubMed ID: 29926464 [Abstract] [Full Text] [Related]
9. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering. Henke M, Baumer J, Blunk T, Tessmar J. J Tissue Eng Regen Med; 2014 Mar 21; 8(3):248-52. PubMed ID: 22718564 [Abstract] [Full Text] [Related]
10. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Risbud M, Ringe J, Bhonde R, Sittinger M. Cell Transplant; 2001 Mar 21; 10(8):755-63. PubMed ID: 11814119 [Abstract] [Full Text] [Related]
11. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Mouser VH, Abbadessa A, Levato R, Hennink WE, Vermonden T, Gawlitta D, Malda J. Biofabrication; 2017 Mar 23; 9(1):015026. PubMed ID: 28229956 [Abstract] [Full Text] [Related]
12. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. Semitela Â, Girão AF, Fernandes C, Ramalho G, Bdikin I, Completo A, Marques PA. J Biomater Appl; 2020 Mar 23; 35(4-5):471-484. PubMed ID: 32635814 [Abstract] [Full Text] [Related]
13. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. Chen M, Feng Z, Guo W, Yang D, Gao S, Li Y, Shen S, Yuan Z, Huang B, Zhang Y, Wang M, Li X, Hao L, Peng J, Liu S, Zhou Y, Guo Q. ACS Appl Mater Interfaces; 2019 Nov 06; 11(44):41626-41639. PubMed ID: 31596568 [Abstract] [Full Text] [Related]
14. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC. Int J Biol Macromol; 2017 Sep 06; 102():1174-1185. PubMed ID: 28487195 [Abstract] [Full Text] [Related]
15. Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes. Huang X, Zhang Y, Donahue HJ, Lowe TL. Tissue Eng; 2007 Nov 06; 13(11):2645-52. PubMed ID: 17683245 [Abstract] [Full Text] [Related]
16. Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering. Liu HW, Su WT, Liu CY, Huang CC. Int J Mol Sci; 2022 Jul 30; 23(15):. PubMed ID: 35955581 [Abstract] [Full Text] [Related]
17. In vivo evaluation of biocompatibility and immune modulation potential of poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone)-gelatin hydrogels enriched with nano-hydroxyapatite in the model of mouse. Alipour M, Ashrafihelan J, Salehi R, Aghazadeh Z, Rezabakhsh A, Hassanzadeh A, Firouzamandi M, Heidarzadeh M, Rahbarghazi R, Aghazadeh M, Saghati S. J Biomater Appl; 2021 May 30; 35(10):1253-1263. PubMed ID: 33632003 [Abstract] [Full Text] [Related]
18. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D. Biomaterials; 2011 Feb 30; 32(6):1508-16. PubMed ID: 21093907 [Abstract] [Full Text] [Related]
19. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives. Boffito M, Sirianni P, Di Rienzo AM, Chiono V. J Biomed Mater Res A; 2015 Mar 30; 103(3):1276-90. PubMed ID: 24912941 [Abstract] [Full Text] [Related]