These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 29490679

  • 1. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV, Czarkwiani A, Blowes LM, Elphick MR, Oliveri P.
    Genome Biol; 2018 Feb 28; 19(1):26. PubMed ID: 29490679
    [Abstract] [Full Text] [Related]

  • 2. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks.
    Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P.
    Evodevo; 2016 Feb 28; 7():2. PubMed ID: 26759711
    [Abstract] [Full Text] [Related]

  • 3. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS, Weideman EP, Hinman VF.
    Dev Biol; 2010 Apr 15; 340(2):200-8. PubMed ID: 19941847
    [Abstract] [Full Text] [Related]

  • 4. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii.
    Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT.
    Evodevo; 2012 Sep 03; 3(1):19. PubMed ID: 22938175
    [Abstract] [Full Text] [Related]

  • 5. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae.
    Delroisse J, Ortega-Martinez O, Dupont S, Mallefet J, Flammang P.
    Mar Genomics; 2015 Oct 03; 23():109-21. PubMed ID: 26044617
    [Abstract] [Full Text] [Related]

  • 6. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H, Matsubara M, Fujitani H, Miyamoto N, Komatsu M, Kiyomoto M, Akasaka K, Wada H.
    Dev Genes Evol; 2010 Sep 03; 220(3-4):107-15. PubMed ID: 20680330
    [Abstract] [Full Text] [Related]

  • 7. Architecture and evolution of the cis-regulatory system of the echinoderm kirrelL gene.
    Khor JM, Ettensohn CA.
    Elife; 2022 Feb 25; 11():. PubMed ID: 35212624
    [Abstract] [Full Text] [Related]

  • 8. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms.
    Mittal V, Reid RW, Machado DJ, Mashanov V, Janies DA.
    BMC Genom Data; 2022 Oct 23; 23(1):75. PubMed ID: 36274129
    [Abstract] [Full Text] [Related]

  • 9. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF, Cheatle Jarvela AM.
    Genesis; 2014 Mar 23; 52(3):193-207. PubMed ID: 24549884
    [Abstract] [Full Text] [Related]

  • 10. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T, Khor JM, Ettensohn CA.
    Genesis; 2018 Oct 23; 56(10):e23253. PubMed ID: 30264451
    [Abstract] [Full Text] [Related]

  • 11. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms.
    Flores RL, Livingston BT.
    BMC Evol Biol; 2017 Jun 05; 17(1):125. PubMed ID: 28583083
    [Abstract] [Full Text] [Related]

  • 12. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y, Koga H, Tachibana K, Shoguchi E, Kiyomoto M, Wada H.
    Evol Dev; 2012 Jun 05; 14(5):428-36. PubMed ID: 22947316
    [Abstract] [Full Text] [Related]

  • 13. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration.
    Piovani L, Czarkwiani A, Ferrario C, Sugni M, Oliveri P.
    BMC Biol; 2021 Jan 18; 19(1):9. PubMed ID: 33461552
    [Abstract] [Full Text] [Related]

  • 14. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S, Davidson EH.
    Wiley Interdiscip Rev Syst Biol Med; 2009 Jan 18; 1(2):237-246. PubMed ID: 20228891
    [Abstract] [Full Text] [Related]

  • 15. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.
    Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, Wray GA.
    PLoS Biol; 2016 Mar 18; 14(3):e1002391. PubMed ID: 26943850
    [Abstract] [Full Text] [Related]

  • 16. Echinoderm development and evolution in the post-genomic era.
    Cary GA, Hinman VF.
    Dev Biol; 2017 Jul 15; 427(2):203-211. PubMed ID: 28185788
    [Abstract] [Full Text] [Related]

  • 17. Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms.
    Khor JM, Ettensohn CA.
    Elife; 2017 Nov 20; 6():. PubMed ID: 29154754
    [Abstract] [Full Text] [Related]

  • 18. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF, Nguyen AT, Cameron RA, Davidson EH.
    Proc Natl Acad Sci U S A; 2003 Nov 11; 100(23):13356-61. PubMed ID: 14595011
    [Abstract] [Full Text] [Related]

  • 19. Phylogenomic analysis of echinoderm class relationships supports Asterozoa.
    Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR.
    Proc Biol Sci; 2014 Jul 07; 281(1786):. PubMed ID: 24850925
    [Abstract] [Full Text] [Related]

  • 20. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa.
    Reich A, Dunn C, Akasaka K, Wessel G.
    PLoS One; 2015 Jul 07; 10(3):e0119627. PubMed ID: 25794146
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.