These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 29498221

  • 1. Enhancing the Lithium Storage Performance of Graphene/SnO2 Nanorods by a Carbon-Riveting Strategy.
    Liu X, Ma T, Sun L, Xu Y, Zhang J, Pinna N.
    ChemSusChem; 2018 Apr 25; 11(8):1321-1327. PubMed ID: 29498221
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.
    Xu W, Xie Z, Cui X, Zhao K, Zhang L, Dietrich G, Dooley KM, Wang Y.
    ACS Appl Mater Interfaces; 2015 Oct 14; 7(40):22533-41. PubMed ID: 26389757
    [Abstract] [Full Text] [Related]

  • 5. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage.
    Huang Y, Wu D, Han S, Li S, Xiao L, Zhang F, Feng X.
    ChemSusChem; 2013 Aug 14; 6(8):1510-5. PubMed ID: 23784753
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM.
    ACS Nano; 2013 Jul 23; 7(7):6001-6. PubMed ID: 23758123
    [Abstract] [Full Text] [Related]

  • 8. Carbon-coated SnO2 riveted on a reduced graphene oxide composite (C@SnO2/RGO) as an anode material for lithium-ion batteries.
    Dai Y, Li F, Fu YX, Mo DC, Lyu SS.
    RSC Adv; 2021 Feb 23; 11(15):8521-8529. PubMed ID: 35423388
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG, Wang Y, Han ZJ, Shi Y, Wong JI, Huang ZX, Ostrikov KK, Yang HY.
    Nanoscale; 2014 Dec 21; 6(24):15020-8. PubMed ID: 25367289
    [Abstract] [Full Text] [Related]

  • 11. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.
    Wang Y, Huang ZX, Shi Y, Wong JI, Ding M, Yang HY.
    Sci Rep; 2015 Mar 17; 5():9164. PubMed ID: 25776280
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries.
    Zhu C, Zhu S, Zhang K, Hui Z, Pan H, Chen Z, Li Y, Zhang D, Wang DW.
    Sci Rep; 2016 May 16; 6():25829. PubMed ID: 27181691
    [Abstract] [Full Text] [Related]

  • 17. Confined Porous Graphene/SnOx Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes.
    Zhou D, Song WL, Li X, Fan LZ.
    ACS Appl Mater Interfaces; 2016 Jun 01; 8(21):13410-7. PubMed ID: 27169479
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO2 /Co Nanocubes for Highly Reversible Lithium Storage.
    He Q, Liu J, Li Z, Li Q, Xu L, Zhang B, Meng J, Wu Y, Mai L.
    Small; 2017 Oct 01; 13(37):. PubMed ID: 28745817
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.