These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


420 related items for PubMed ID: 29519423

  • 1. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration.
    Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G.
    Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():140-147. PubMed ID: 29519423
    [Abstract] [Full Text] [Related]

  • 2. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D, Zhang Z, Zheng C, Zhao B, Sun K, Nian Z, Zhang X, Li R, Li H.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar 01; 30(3):292-7. PubMed ID: 27281872
    [Abstract] [Full Text] [Related]

  • 3. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications.
    S G, T G, K V, Faleh A A, Sukumaran A, P N S.
    Int J Biol Macromol; 2018 Dec 01; 120(Pt A):876-885. PubMed ID: 30171951
    [Abstract] [Full Text] [Related]

  • 4. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ, Min KD, Lee MC, Kim SH, Lee OJ, Ju HW, Moon BM, Lee JM, Park YR, Kim DW, Jeong JY, Park CH.
    J Biomed Mater Res A; 2016 Jul 01; 104(7):1779-87. PubMed ID: 26999521
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K, Li R, Jiang W, Sun Y, Li H.
    Biochem Biophys Res Commun; 2016 Sep 02; 477(4):1085-1091. PubMed ID: 27404126
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW.
    Biomacromolecules; 2017 Apr 10; 18(4):1229-1237. PubMed ID: 28277649
    [Abstract] [Full Text] [Related]

  • 10. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W, He J, Sang F, Ding B, Chen L, Cui S, Li K, Han Q, Tan W.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():342-51. PubMed ID: 26478319
    [Abstract] [Full Text] [Related]

  • 11. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI, Cahill PA, Stokes J, McGuinness GB.
    J Biomater Appl; 2016 Apr 01; 30(9):1334-49. PubMed ID: 26767394
    [Abstract] [Full Text] [Related]

  • 12. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo.
    Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, Duan X, Fu X, Zhang J, Chen H, Ao Y.
    Adv Mater; 2017 Aug 01; 29(29):. PubMed ID: 28585319
    [Abstract] [Full Text] [Related]

  • 13. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G.
    Int J Biol Macromol; 2017 Feb 01; 95():14-23. PubMed ID: 27818295
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH, Kim DK, Lee OJ, Ju HW, Lee JM, Moon BM, Park HJ, Kim DW, Lee JH, Park CH.
    Int J Biol Macromol; 2016 Jan 01; 82():160-7. PubMed ID: 26257379
    [Abstract] [Full Text] [Related]

  • 16. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y, Dan W, Xiong S, Kang Y, Dhinakar A, Wu J, Gu Z.
    Acta Biomater; 2017 Jan 01; 47():135-148. PubMed ID: 27744068
    [Abstract] [Full Text] [Related]

  • 17. Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration.
    Huh J, Lee J, Kim W, Yeo M, Kim G.
    Int J Biol Macromol; 2018 Apr 15; 110():488-496. PubMed ID: 28917939
    [Abstract] [Full Text] [Related]

  • 18. Three-Dimensional Hierarchical Nanofibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone Tissue.
    Lee J, Kim G.
    ACS Appl Mater Interfaces; 2018 Oct 24; 10(42):35801-35811. PubMed ID: 30260631
    [Abstract] [Full Text] [Related]

  • 19. Biological functionality and mechanistic contribution of extracellular matrix-ornamented three dimensional Ti-6Al-4V mesh scaffolds.
    Kumar A, Nune KC, Misra RD.
    J Biomed Mater Res A; 2016 Nov 24; 104(11):2751-63. PubMed ID: 27325185
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.