These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 29520139
1. Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Kang YG, Wei J, Shin JW, Wu YR, Su J, Park YS, Shin JW. Int J Nanomedicine; 2018; 13():1107-1117. PubMed ID: 29520139 [Abstract] [Full Text] [Related]
2. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H. Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139 [Abstract] [Full Text] [Related]
3. Characterization and osteogenic evaluation of mesoporous magnesium-calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping. Kang YG, Wei J, Kim JE, Wu YR, Lee EJ, Su J, Shin JW. RSC Adv; 2018 Sep 28; 8(59):33882-33892. PubMed ID: 35548789 [Abstract] [Full Text] [Related]
4. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering. Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS. J Mater Chem B; 2024 Jul 17; 12(28):6886-6904. PubMed ID: 38912967 [Abstract] [Full Text] [Related]
5. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite. He D, Dong W, Tang S, Wei J, Liu Z, Gu X, Li M, Guo H, Niu Y. J Mater Sci Mater Med; 2014 Jun 17; 25(6):1415-24. PubMed ID: 24595904 [Abstract] [Full Text] [Related]
6. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. Pazarçeviren AE, Dikmen T, Altunbaş K, Yaprakçı V, Erdemli Ö, Keskin D, Tezcaner A. J Tissue Eng Regen Med; 2020 Jan 17; 14(1):3-15. PubMed ID: 31475790 [Abstract] [Full Text] [Related]
7. Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviors. Niu Y, Dong W, Guo H, Deng Y, Guo L, An X, He D, Wei J, Li M. Int J Nanomedicine; 2014 Jan 17; 9():2665-75. PubMed ID: 24920903 [Abstract] [Full Text] [Related]
8. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N, Pavasant P, Supaphol P. J Biomater Sci Polym Ed; 2014 Jan 17; 25(17):1986-2008. PubMed ID: 25291106 [Abstract] [Full Text] [Related]
9. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Ambre AH, Katti DR, Katti KS. J Biomed Mater Res A; 2015 Jun 17; 103(6):2077-101. PubMed ID: 25331212 [Abstract] [Full Text] [Related]
10. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Lin YH, Chuang TY, Chiang WH, Chen IP, Wang K, Shie MY, Chen YW. Mater Sci Eng C Mater Biol Appl; 2019 Nov 17; 104():109887. PubMed ID: 31500024 [Abstract] [Full Text] [Related]
11. 3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration. Mirzavandi Z, Poursamar SA, Amiri F, Bigham A, Rafienia M. J Mater Sci Mater Med; 2024 Sep 30; 35(1):58. PubMed ID: 39348082 [Abstract] [Full Text] [Related]
12. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S. Int J Nanomedicine; 2013 Sep 30; 8():4197-213. PubMed ID: 24204147 [Abstract] [Full Text] [Related]
13. Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation. Abazari MF, Soleimanifar F, Enderami SE, Nematzadeh M, Nasiri N, Nejati F, Saburi E, Khodashenas S, Darbasizadeh B, Khani MM, Ghoraeian P. J Cell Biochem; 2019 Oct 30; 120(10):16750-16759. PubMed ID: 31081968 [Abstract] [Full Text] [Related]
14. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Unagolla JM, Jayasuriya AC. Mater Sci Eng C Mater Biol Appl; 2019 Sep 30; 102():1-11. PubMed ID: 31146979 [Abstract] [Full Text] [Related]
15. Influence of varying concentrations of chitosan coating on the pore wall of polycaprolactone based porous scaffolds for tissue engineering application. Poddar D, Jain P, Rawat S, Mohanty S. Carbohydr Polym; 2021 May 01; 259():117501. PubMed ID: 33673978 [Abstract] [Full Text] [Related]
16. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Kim MS, Kim G. Carbohydr Polym; 2014 Dec 19; 114():213-221. PubMed ID: 25263884 [Abstract] [Full Text] [Related]
17. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T. Mater Sci Eng C Mater Biol Appl; 2019 Nov 19; 104():109960. PubMed ID: 31500051 [Abstract] [Full Text] [Related]
18. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Carvalho MS, Silva JC, Udangawa RN, Cabral JMS, Ferreira FC, da Silva CL, Linhardt RJ, Vashishth D. Mater Sci Eng C Mater Biol Appl; 2019 Jun 19; 99():479-490. PubMed ID: 30889723 [Abstract] [Full Text] [Related]