These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
276 related items for PubMed ID: 29520488
1. Determination of carbonyl compounds in electronic cigarette refill solutions and aerosols through liquid-phase dinitrophenyl hydrazine derivatization. Lee MH, Szulejko JE, Kim KH. Environ Monit Assess; 2018 Mar 08; 190(4):200. PubMed ID: 29520488 [Abstract] [Full Text] [Related]
2. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol. Jo SH, Kim KH. J Chromatogr A; 2016 Jan 15; 1429():369-73. PubMed ID: 26748866 [Abstract] [Full Text] [Related]
3. Trace analysis of carbonyl compounds by liquid chromatography-mass spectrometry after collection as 2,4-dinitrophenylhydrazine derivatives. Sakuragawa A, Yoneno T, Inoue K, Okutani T. J Chromatogr A; 1999 Jun 04; 844(1-2):403-8. PubMed ID: 10399334 [Abstract] [Full Text] [Related]
4. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Gillman IG, Kistler KA, Stewart EW, Paolantonio AR. Regul Toxicol Pharmacol; 2016 Mar 04; 75():58-65. PubMed ID: 26743740 [Abstract] [Full Text] [Related]
5. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization. Lin YL, Wang PY, Hsieh LL, Ku KH, Yeh YT, Wu CH. J Chromatogr A; 2009 Sep 04; 1216(36):6377-81. PubMed ID: 19643424 [Abstract] [Full Text] [Related]
6. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols. Beauval N, Verrièle M, Garat A, Fronval I, Dusautoir R, Anthérieu S, Garçon G, Lo-Guidice JM, Allorge D, Locoge N. Int J Hyg Environ Health; 2019 Jan 04; 222(1):136-146. PubMed ID: 30220464 [Abstract] [Full Text] [Related]
7. Quantitation of formaldehyde, acetaldehyde, and acetone in sidestream cigarette smoke by high-performance liquid chromatography. Risner CH, Martin P. J Chromatogr Sci; 1994 Mar 04; 32(3):76-82. PubMed ID: 8200918 [Abstract] [Full Text] [Related]
8. Compensatory Puffing With Lower Nicotine Concentration E-liquids Increases Carbonyl Exposure in E-cigarette Aerosols. Kosmider L, Kimber CF, Kurek J, Corcoran O, Dawkins LE. Nicotine Tob Res; 2018 Jul 09; 20(8):998-1003. PubMed ID: 29065196 [Abstract] [Full Text] [Related]
9. Evaluation of media and derivatization chemistry for six aldehydes in a passive sampler. Liu LJ, Dills RL, Paulsen M, Kalman DA. Environ Sci Technol; 2001 Jun 01; 35(11):2301-8. PubMed ID: 11414036 [Abstract] [Full Text] [Related]
11. E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions. Farsalinos KE, Voudris V, Poulas K. Addiction; 2015 Aug 01; 110(8):1352-6. PubMed ID: 25996087 [Abstract] [Full Text] [Related]
12. Electronic cigarette vaping with aged coils causes acute lung injury in mice. Goto S, Grange RMH, Pinciroli R, Rosales IA, Li R, Boerboom SL, Ostrom KF, Marutani E, Wanderley HV, Bagchi A, Colvin RB, Berra L, Minaeva O, Goldstein LE, Malhotra R, Zapol WM, Ichinose F, Yu B. Arch Toxicol; 2022 Dec 01; 96(12):3363-3371. PubMed ID: 36195745 [Abstract] [Full Text] [Related]
13. Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols. Flora JW, Wilkinson CT, Wilkinson JW, Lipowicz PJ, Skapars JA, Anderson A, Miller JH. J Chromatogr Sci; 2017 Feb 01; 55(2):142-148. PubMed ID: 28087758 [Abstract] [Full Text] [Related]
14. Analysis of lower aliphatic aldehydes in water by micellar electrokinetic chromatography with derivatization to 2,4-dinitrophenylhydrazones. Takeda S, Wakida S, Yamane M, Higashi K. Electrophoresis; 1994 Oct 01; 15(10):1332-4. PubMed ID: 7895728 [Abstract] [Full Text] [Related]
15. Determination of aldehydes and ketones in air samples using cryotrapping sampling. Levart A, Veber M. Chemosphere; 2001 Aug 01; 44(4):701-8. PubMed ID: 11482659 [Abstract] [Full Text] [Related]
16. Formaldehyde Hemiacetal Sampling, Recovery, and Quantification from Electronic Cigarette Aerosols. Salamanca JC, Munhenzva I, Escobedo JO, Jensen RP, Shaw A, Campbell R, Luo W, Peyton DH, Strongin RM. Sci Rep; 2017 Sep 08; 7(1):11044. PubMed ID: 28887552 [Abstract] [Full Text] [Related]
17. Aldehyde levels in e-cigarette aerosol: Findings from a replication study and from use of a new-generation device. Farsalinos KE, Kistler KA, Pennington A, Spyrou A, Kouretas D, Gillman G. Food Chem Toxicol; 2018 Jan 08; 111():64-70. PubMed ID: 29109042 [Abstract] [Full Text] [Related]
18. Development of a compound-specific isotope analysis method for atmospheric formaldehyde and acetaldehyde. Wen S, Feng Y, Yu Y, Bi X, Wang X, Sheng G, Fu J, Peng P. Environ Sci Technol; 2005 Aug 15; 39(16):6202-7. PubMed ID: 16173582 [Abstract] [Full Text] [Related]
19. Screening check test to confirm the relative reactivity and applicability of 2,4-dinitrophenylhydrazine impregnated-filters for formaldehyde on other compounds. Inoue N, Takaya M. J Occup Health; 2022 Jan 15; 64(1):e12333. PubMed ID: 35462454 [Abstract] [Full Text] [Related]
20. A Strategy for Efficiently Collecting Aerosol Condensate Using Silica Fibers: Application to Carbonyl Emissions from E-Cigarettes. Stephens WE, de Falco B, Fiore A. Chem Res Toxicol; 2019 Oct 21; 32(10):2053-2062. PubMed ID: 31515993 [Abstract] [Full Text] [Related] Page: [Next] [New Search]