These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 29523964

  • 1. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis.
    Yan Y, He X, Hu W, Liu G, Wang P, He C, Shi H.
    Plant Cell Rep; 2018 Jun; 37(6):887-900. PubMed ID: 29523964
    [Abstract] [Full Text] [Related]

  • 2. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis.
    Muñoz-Bodnar A, Perez-Quintero AL, Gomez-Cano F, Gil J, Michelmore R, Bernal A, Szurek B, Lopez C.
    Plant Cell Rep; 2014 Nov; 33(11):1901-12. PubMed ID: 25120000
    [Abstract] [Full Text] [Related]

  • 3. Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight.
    Zeng H, Xie Y, Liu G, Lin D, He C, Shi H.
    Plant Mol Biol; 2018 Jun; 97(3):201-214. PubMed ID: 29679263
    [Abstract] [Full Text] [Related]

  • 4. Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight.
    Li X, Liu W, Li B, Liu G, Wei Y, He C, Shi H.
    Plant Physiol Biochem; 2018 Mar; 124():70-76. PubMed ID: 29351892
    [Abstract] [Full Text] [Related]

  • 5. The CBL1/9-CIPK23-AKT1 complex is essential for low potassium response in cassava.
    Yan Y, He M, Guo J, Zeng H, Wei Y, Liu G, Hu W, Shi H.
    Plant Physiol Biochem; 2021 Oct; 167():430-437. PubMed ID: 34411782
    [Abstract] [Full Text] [Related]

  • 6. Functional characterization of WHY-WRKY75 transcriptional module in plant response to cassava bacterial blight.
    Liu W, Yan Y, Zeng H, Li X, Wei Y, Liu G, He C, Shi H.
    Tree Physiol; 2018 Oct 01; 38(10):1502-1512. PubMed ID: 29788191
    [Abstract] [Full Text] [Related]

  • 7. MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava.
    Yan Y, Wang P, He C, Shi H.
    Biochem Biophys Res Commun; 2017 Dec 09; 494(1-2):20-26. PubMed ID: 29056507
    [Abstract] [Full Text] [Related]

  • 8. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava.
    Yoodee S, Kobayashi Y, Songnuan W, Boonchird C, Thitamadee S, Kobayashi I, Narangajavana J.
    Plant Physiol Biochem; 2018 Jan 09; 122():65-77. PubMed ID: 29190504
    [Abstract] [Full Text] [Related]

  • 9. Functional analysis of the heterotrimeric NF-Y transcription factor complex in cassava disease resistance.
    He X, Liu G, Li B, Xie Y, Wei Y, Shang S, Tian L, Shi H.
    Ann Bot; 2020 Jan 06; 124(7):1185-1198. PubMed ID: 31282544
    [Abstract] [Full Text] [Related]

  • 10. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava.
    Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou BH, Frommer WB, Lahaye T, Staskawicz BJ.
    Mol Plant Microbe Interact; 2014 Nov 06; 27(11):1186-98. PubMed ID: 25083909
    [Abstract] [Full Text] [Related]

  • 11. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava.
    Cohn M, Morbitzer R, Lahaye T, Staskawicz BJ.
    Mol Plant Pathol; 2016 Aug 06; 17(6):875-89. PubMed ID: 26575863
    [Abstract] [Full Text] [Related]

  • 12. The co-modulation of RAV transcription factors in ROS burst and extensive transcriptional reprogramming underlies disease resistance in cassava.
    Wang P, Yan Y, Lu Y, Liu G, Liu J, Shi H.
    Plant Cell Rep; 2022 May 06; 41(5):1261-1272. PubMed ID: 35275280
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Correction to: Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. Manihotis.
    Yan Y, He X, Hu W, Liu G, Wang P, He C, Shi H.
    Plant Cell Rep; 2024 Jun 25; 43(7):181. PubMed ID: 38918207
    [No Abstract] [Full Text] [Related]

  • 15. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava.
    Fan S, Chang Y, Liu G, Shang S, Tian L, Shi H.
    Physiol Plant; 2020 Jan 25; 168(1):88-97. PubMed ID: 30950065
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis.
    Pérez-Quintero ÁL, Quintero A, Urrego O, Vanegas P, López C.
    BMC Plant Biol; 2012 Feb 23; 12():29. PubMed ID: 22361011
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis.
    Díaz Tatis PA, Herrera Corzo M, Ochoa Cabezas JC, Medina Cipagauta A, Prías MA, Verdier V, Chavarriaga Aguirre P, López Carrascal CE.
    Planta; 2018 Apr 23; 247(4):1031-1042. PubMed ID: 29453662
    [Abstract] [Full Text] [Related]

  • 20. AFLP assessment of genetic variability in cassava accessions (Manihot esculenta) resistant and susceptible to the cassava bacterial blight (CBB).
    Sanchez G, Restrepo S, Duque MC, Fregene M, Bonierbale M, Verdier V.
    Genome; 1999 Apr 23; 42(2):163-72. PubMed ID: 10231955
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.