These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 29524619
21. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. De Beer TR, Vercruysse P, Burggraeve A, Quinten T, Ouyang J, Zhang X, Vervaet C, Remon JP, Baeyens WR. J Pharm Sci; 2009 Sep; 98(9):3430-46. PubMed ID: 19130604 [Abstract] [Full Text] [Related]
22. Solid-State Quantification of Cocrystals in Pharmaceutical Tablets Using Transmission Low-Frequency Raman Spectroscopy. Inoue M, Osada T, Hisada H, Koide T, Fukami T, Roy A, Carriere J, Heyler R. Anal Chem; 2019 Nov 05; 91(21):13427-13432. PubMed ID: 31565923 [Abstract] [Full Text] [Related]
23. Comparison of NIR chemical imaging with conventional NIR, Raman and ATR-IR spectroscopy for quantification of furosemide crystal polymorphs in ternary powder mixtures. Schönbichler SA, Bittner LK, Weiss AK, Griesser UJ, Pallua JD, Huck CW. Eur J Pharm Biopharm; 2013 Aug 05; 84(3):616-25. PubMed ID: 23395969 [Abstract] [Full Text] [Related]
24. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion. Boksa K, Otte A, Pinal R. J Pharm Sci; 2014 Sep 05; 103(9):2904-2910. PubMed ID: 24807421 [Abstract] [Full Text] [Related]
25. The potential of Raman spectroscopy as a process analytical technique during formulations of topical gels and emulsions. Islam MT, Rodríguez-Hornedo N, Ciotti S, Ackermann C. Pharm Res; 2004 Oct 05; 21(10):1844-51. PubMed ID: 15553231 [Abstract] [Full Text] [Related]
26. Application of on-line Raman spectroscopy for characterizing relationships between drug hydration state and tablet physical stability. Hausman DS, Cambron RT, Sakr A. Int J Pharm; 2005 Aug 11; 299(1-2):19-33. PubMed ID: 15979262 [Abstract] [Full Text] [Related]
27. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy. Saerens L, Ghanam D, Raemdonck C, Francois K, Manz J, Krüger R, Krüger S, Vervaet C, Remon JP, De Beer T. Eur J Pharm Biopharm; 2014 Aug 11; 87(3):606-15. PubMed ID: 24657540 [Abstract] [Full Text] [Related]
28. Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms. Korasa K, Vrečer F. Eur J Pharm Sci; 2018 Jan 01; 111():278-292. PubMed ID: 29020609 [Abstract] [Full Text] [Related]
29. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder. Walker G, Römann P, Poller B, Löbmann K, Grohganz H, Rooney JS, Huff GS, Smith GPS, Rades T, Gordon KC, Strachan CJ, Fraser-Miller SJ. Mol Pharm; 2017 Dec 04; 14(12):4675-4684. PubMed ID: 29091447 [Abstract] [Full Text] [Related]
30. Quantitative Monitoring of Cocrystal Polymorphisms in Model Tablets Using Transmission Low-Frequency Raman Spectroscopy. Inoue M, Osada T, Hisada H, Koide T, Fukami T, Roy A, Carriere J. J Pharm Sci; 2023 Jan 04; 112(1):225-229. PubMed ID: 36126759 [Abstract] [Full Text] [Related]
31. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy. Larkin PJ, Dabros M, Sarsfield B, Chan E, Carriere JT, Smith BC. Appl Spectrosc; 2014 Jan 04; 68(7):758-76. PubMed ID: 25014842 [Abstract] [Full Text] [Related]
32. Raman Spectroscopy for Process Analytical Technologies of Pharmaceutical Secondary Manufacturing. Nagy B, Farkas A, Borbás E, Vass P, Nagy ZK, Marosi G. AAPS PharmSciTech; 2018 Dec 17; 20(1):1. PubMed ID: 30560395 [Abstract] [Full Text] [Related]
33. Improving the Solid-State Photostability of Furosemide by Its Cocrystal Formation. Teraoka R, Fukami T, Furuishi T, Nagase H, Ueda H, Tode C, Yutani R, Kitagawa S, Sakane T. Chem Pharm Bull (Tokyo); 2019 Dec 17; 67(9):940-944. PubMed ID: 31474733 [Abstract] [Full Text] [Related]
34. Monitoring of Cocrystal Dissociation during the Wet Granulation Process in the Presence of Disintegrants by Using Low-Frequency Raman Spectroscopy. Suzuki N, Fukui K, Otaka K, Suzuki T, Fukami T. Chem Pharm Bull (Tokyo); 2021 Dec 17; 69(9):877-885. PubMed ID: 34470952 [Abstract] [Full Text] [Related]
35. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. Seefeldt K, Miller J, Alvarez-Núñez F, Rodríguez-Hornedo N. J Pharm Sci; 2007 May 17; 96(5):1147-58. PubMed ID: 17455346 [Abstract] [Full Text] [Related]
36. Terahertz spectroscopy and computational investigation of the flufenamic acid/nicotinamide cocrystal. Delaney SP, Korter TM. J Phys Chem A; 2015 Apr 02; 119(13):3269-76. PubMed ID: 25787318 [Abstract] [Full Text] [Related]
37. Low- versus Mid-frequency Raman Spectroscopy for in Situ Analysis of Crystallization in Slurries. Koskela J, Sutton JJ, Lipiäinen T, Gordon KC, Strachan CJ, Fraser-Miller SJ. Mol Pharm; 2022 Jul 04; 19(7):2316-2326. PubMed ID: 35503753 [Abstract] [Full Text] [Related]
38. Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods. Calvo NL, Maggio RM, Kaufman TS. J Pharm Biomed Anal; 2018 Jan 05; 147():538-564. PubMed ID: 28666554 [Abstract] [Full Text] [Related]
39. Application of Vibrational Spectroscopy to Study Solid-state Transformations of Pharmaceuticals. Erxleben A. Curr Pharm Des; 2016 Jan 05; 22(32):4883-4911. PubMed ID: 27464723 [Abstract] [Full Text] [Related]
40. At-line near-infrared and Raman spectroscopy methods for determining the thermal decomposition of sodium hydrogen carbonate in a fluidized bed process. Frenkel K, Opel C, Walter R, Imming P. J Pharm Biomed Anal; 2022 Sep 20; 219():114918. PubMed ID: 35930830 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]