These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 29525411
21. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA, Gould TD. Nature; 2016 May 26; 533(7604):481-6. PubMed ID: 27144355 [Abstract] [Full Text] [Related]
22. The role of glutamate on the action of antidepressants. Hashimoto K. Prog Neuropsychopharmacol Biol Psychiatry; 2011 Aug 15; 35(7):1558-68. PubMed ID: 20600468 [Abstract] [Full Text] [Related]
23. The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs. Quesseveur G, Gardier AM, Guiard BP. Curr Drug Targets; 2013 Oct 15; 14(11):1277-94. PubMed ID: 24020973 [Abstract] [Full Text] [Related]
24. Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors. Lazarevic V, Yang Y, Flais I, Svenningsson P. Mol Psychiatry; 2021 Dec 15; 26(12):7425-7435. PubMed ID: 34376822 [Abstract] [Full Text] [Related]
25. Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Shaffer CL, Dutra JK, Tseng WC, Weber ML, Bogart LJ, Hales K, Pang J, Volfson D, Am Ende CW, Green ME, Buhl DL. Neuropharmacology; 2019 Jul 15; 153():73-81. PubMed ID: 31015046 [Abstract] [Full Text] [Related]
26. Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration. Ferrés-Coy A, Galofré M, Pilar-Cuéllar F, Vidal R, Paz V, Ruiz-Bronchal E, Campa L, Pazos Á, Caso JR, Leza JC, Alvarado G, Montefeltro A, Valdizán EM, Artigas F, Bortolozzi A. Mol Psychiatry; 2016 Mar 15; 21(3):328-38. PubMed ID: 26100539 [Abstract] [Full Text] [Related]
27. CYP 450 enzymes influence (R,S)-ketamine brain delivery and its antidepressant activity. Nguyen TML, McGowan JC, Gardier AM. Neuropharmacology; 2022 Mar 15; 206():108936. PubMed ID: 34965407 [Abstract] [Full Text] [Related]
28. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Hillhouse TM, Porter JH. Exp Clin Psychopharmacol; 2015 Feb 15; 23(1):1-21. PubMed ID: 25643025 [Abstract] [Full Text] [Related]
29. Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test. Gonçalves FM, Neis VB, Rieger DK, Peres TV, Lopes MW, Heinrich IA, Costa AP, Rodrigues ALS, Kaster MP, Leal RB. J Neural Transm (Vienna); 2017 Oct 15; 124(10):1227-1237. PubMed ID: 28695335 [Abstract] [Full Text] [Related]
30. Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions. Chou D. Neuropharmacology; 2020 Jun 15; 170():108068. PubMed ID: 32222405 [Abstract] [Full Text] [Related]
31. Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression. Ho MF, Correia C, Ingle JN, Kaddurah-Daouk R, Wang L, Kaufmann SH, Weinshilboum RM. Biochem Pharmacol; 2018 Jun 15; 152():279-292. PubMed ID: 29621538 [Abstract] [Full Text] [Related]
32. Developments in the field of antidepressants, where do we go now? Artigas F. Eur Neuropsychopharmacol; 2015 May 15; 25(5):657-70. PubMed ID: 23706576 [Abstract] [Full Text] [Related]
33. A Negative Allosteric Modulator for α5 Subunit-Containing GABA Receptors Exerts a Rapid and Persistent Antidepressant-Like Action without the Side Effects of the NMDA Receptor Antagonist Ketamine in Mice. Zanos P, Nelson ME, Highland JN, Krimmel SR, Georgiou P, Gould TD, Thompson SM. eNeuro; 2017 May 15; 4(1):. PubMed ID: 28275719 [Abstract] [Full Text] [Related]
34. Astrocyte control of glutamatergic activity: Downstream effects on serotonergic function and emotional behavior. Fullana N, Gasull-Camós J, Tarrés-Gatius M, Castañé A, Bortolozzi A, Artigas F. Neuropharmacology; 2020 Apr 15; 166():107914. PubMed ID: 32045742 [Abstract] [Full Text] [Related]
36. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Synapse; 2017 Jan 15; 71(1):37-45. PubMed ID: 27589698 [Abstract] [Full Text] [Related]
37. The role of mTOR in depression and antidepressant responses. Abelaira HM, Réus GZ, Neotti MV, Quevedo J. Life Sci; 2014 Apr 17; 101(1-2):10-4. PubMed ID: 24582593 [Abstract] [Full Text] [Related]
38. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine. Wohleb ES, Gerhard D, Thomas A, Duman RS. Curr Neuropharmacol; 2017 Apr 17; 15(1):11-20. PubMed ID: 26955968 [Abstract] [Full Text] [Related]
39. Role of Serotonergic System in the Antidepressant Actions of mGlu2/3 Receptor Antagonists: Similarity to Ketamine. Chaki S, Fukumoto K. Int J Mol Sci; 2019 Mar 13; 20(6):. PubMed ID: 30871246 [Abstract] [Full Text] [Related]
40. Ketamine and other potential glutamate antidepressants. Dutta A, McKie S, Deakin JFW. Psychiatry Res; 2015 Jan 30; 225(1-2):1-13. PubMed ID: 25467702 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]