These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 29530975

  • 1. Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status.
    Oyen KJ, Dillon ME.
    J Exp Biol; 2018 Apr 19; 221(Pt 8):. PubMed ID: 29530975
    [Abstract] [Full Text] [Related]

  • 2. Altitudinal variation in bumble bee (Bombus) critical thermal limits.
    Oyen KJ, Giri S, Dillon ME.
    J Therm Biol; 2016 Jul 19; 59():52-7. PubMed ID: 27264888
    [Abstract] [Full Text] [Related]

  • 3. Feeling the heat: Bumblebee workers show no acclimation capacity of upper thermal tolerance to simulated heatwaves.
    Sepúlveda Y, Goulson D.
    J Therm Biol; 2023 Aug 19; 116():103672. PubMed ID: 37531893
    [Abstract] [Full Text] [Related]

  • 4. Thermal tolerance responses of the two-spotted stink bug, Bathycoelia distincta (Hemiptera: Pentatomidae), vary with life stage and the sex of adults.
    Muluvhahothe MM, Joubert E, Foord SH.
    J Therm Biol; 2023 Jan 19; 111():103395. PubMed ID: 36585076
    [Abstract] [Full Text] [Related]

  • 5. Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions.
    Gonzalez VH, Oyen K, Ávila O, Ospina R.
    J Therm Biol; 2022 Dec 19; 110():103369. PubMed ID: 36462866
    [Abstract] [Full Text] [Related]

  • 6. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees.
    Gonzalez VH, Oyen K, Aguilar ML, Herrera A, Martin RD, Ospina R.
    Ecol Evol; 2022 Dec 19; 12(12):e9560. PubMed ID: 36479027
    [Abstract] [Full Text] [Related]

  • 7. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SA.
    J Insect Physiol; 2013 Oct 19; 59(10):1057-64. PubMed ID: 23973412
    [Abstract] [Full Text] [Related]

  • 8. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation.
    Páez-Vacas MI, Funk WC.
    J Therm Biol; 2024 Feb 19; 120():103815. PubMed ID: 38402728
    [Abstract] [Full Text] [Related]

  • 9. Sperm can't take the heat: Short-term temperature exposures compromise fertility of male bumble bees (Bombus impatiens).
    Campion C, Rajamohan A, Dillon ME.
    J Insect Physiol; 2023 Apr 19; 146():104491. PubMed ID: 36773841
    [Abstract] [Full Text] [Related]

  • 10. Effective practices for thermal tolerance polygon experiments using mottled catfish Corydoras paleatus.
    Conte M, de Campos DF, Eme J.
    J Therm Biol; 2023 Jul 19; 115():103616. PubMed ID: 37437371
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Time course of acclimation of critical thermal limits in two springtail species (Collembola).
    Kuyucu AC, Chown SL.
    J Insect Physiol; 2021 Apr 19; 130():104209. PubMed ID: 33609519
    [Abstract] [Full Text] [Related]

  • 13. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL, Chown SL, Janion-Scheepers C, Clusella-Trullas S.
    Conserv Physiol; 2016 Apr 19; 4(1):cow053. PubMed ID: 27933165
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL, Fernández JB, Ibargüengoytía NR.
    J Comp Physiol B; 2016 Feb 19; 186(2):243-53. PubMed ID: 26679700
    [Abstract] [Full Text] [Related]

  • 16. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee.
    Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD.
    Sci Rep; 2020 Oct 13; 10(1):17063. PubMed ID: 33051510
    [Abstract] [Full Text] [Related]

  • 17. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.
    Peng J, Cao ZD, Fu SJ.
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct 13; 176():32-40. PubMed ID: 25026540
    [Abstract] [Full Text] [Related]

  • 18. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae.
    Moyano M, Candebat C, Ruhbaum Y, Álvarez-Fernández S, Claireaux G, Zambonino-Infante JL, Peck MA.
    PLoS One; 2017 Oct 13; 12(7):e0179928. PubMed ID: 28749960
    [Abstract] [Full Text] [Related]

  • 19. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi.
    Cooper CJ, Mueller CA, Eme J.
    J Therm Biol; 2019 Dec 13; 86():102434. PubMed ID: 31789229
    [Abstract] [Full Text] [Related]

  • 20. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.
    Xu W, Dang W, Geng J, Lu HL.
    J Therm Biol; 2015 Oct 13; 53():119-24. PubMed ID: 26590464
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.