These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 29533156
1. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults. Chaikhot D, Taylor MJD, Hettinga FJ. Eur J Sport Sci; 2018 Jun; 18(5):650-658. PubMed ID: 29533156 [Abstract] [Full Text] [Related]
2. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men. Chaikhot D, Reed K, Petroongrad W, Athanasiou F, van Kooten D, Hettinga FJ. J Strength Cond Res; 2020 Aug; 34(8):2267-2275. PubMed ID: 30024482 [Abstract] [Full Text] [Related]
3. Differentiated perceived exertion and self-regulated wheelchair exercise. Paulson TA, Bishop NC, Eston RG, Goosey-Tolfrey VL. Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415 [Abstract] [Full Text] [Related]
4. Wheelchair propulsion: effects of experience and push strategy on efficiency and perceived exertion. Lenton JP, Fowler NE, van der Woude L, Goosey-Tolfrey VL. Appl Physiol Nutr Metab; 2008 Oct; 33(5):870-9. PubMed ID: 18923561 [Abstract] [Full Text] [Related]
5. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison. Lenton JP, van der Woude L, Fowler N, Nicholson G, Tolfrey K, Goosey-Tolfrey V. Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971 [Abstract] [Full Text] [Related]
6. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion. Goosey-Tolfrey VL, Kirk JH. Eur J Appl Physiol; 2003 Sep; 90(1-2):154-8. PubMed ID: 14504947 [Abstract] [Full Text] [Related]
7. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice. Goosey-Tolfrey VL, West M, Lenton JP, Tolfrey K. Int J Sports Med; 2011 Feb; 32(2):126-31. PubMed ID: 21165800 [Abstract] [Full Text] [Related]
8. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users. Gauthier C, Grangeon M, Ananos L, Brosseau R, Gagnon DH. Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868 [Abstract] [Full Text] [Related]
10. Efficiency of wheelchair propulsion and effects of strategy. Lenton JP, Fowler N, van der Woude L, Goosey-Tolfrey VL. Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885 [Abstract] [Full Text] [Related]
11. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Veeger HE, van der Woude LH, Rozendal RH. Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983 [Abstract] [Full Text] [Related]
12. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions. de Klerk R, Velhorst V, Veeger DHEJ, van der Woude LHV, Vegter RJK. J Neuroeng Rehabil; 2020 Oct 17; 17(1):136. PubMed ID: 33069257 [Abstract] [Full Text] [Related]
13. Perceived exertion responses to wheelchair propulsion differ between novice able-bodied and trained wheelchair sportspeople. Hutchinson MJ, Kilgallon JW, Leicht CA, Goosey-Tolfrey VL. J Sci Med Sport; 2020 Apr 17; 23(4):403-407. PubMed ID: 31706827 [Abstract] [Full Text] [Related]
14. Hand-rim forces and gross mechanical efficiency at various frequencies of wheelchair propulsion. Lenton JP, van der Woude LH, Fowler NE, Nicholson G, Tolfrey K, Goosey-Tolfrey VL. Int J Sports Med; 2013 Feb 17; 34(2):158-64. PubMed ID: 22918717 [Abstract] [Full Text] [Related]
15. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. de Groot S, de Bruin M, Noomen SP, van der Woude LH. Clin Biomech (Bristol); 2008 May 17; 23(4):434-41. PubMed ID: 18077065 [Abstract] [Full Text] [Related]
16. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique. de Groot S, Vegter RJ, van der Woude LH. Med Eng Phys; 2013 Oct 17; 35(10):1476-82. PubMed ID: 23642660 [Abstract] [Full Text] [Related]
17. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LH, Veeger DH. J Neuroeng Rehabil; 2015 Mar 10; 12():26. PubMed ID: 25889389 [Abstract] [Full Text] [Related]
18. Relationship between rolling resistance, preferred speed, and manual wheelchair propulsion mechanics in non-disabled adults. Soleymani H, Cowan R. Disabil Rehabil Assist Technol; 2024 Jul 10; 19(5):1980-1991. PubMed ID: 37493253 [Abstract] [Full Text] [Related]
20. Effect of workload setting on propulsion technique in handrim wheelchair propulsion. van Drongelen S, Arnet U, Veeger DH, van der Woude LH. Med Eng Phys; 2013 Mar 10; 35(3):283-8. PubMed ID: 22910103 [Abstract] [Full Text] [Related] Page: [Next] [New Search]