These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 29543001

  • 1. Johari-Goldstein Relaxation Far Below T_{g}: Experimental Evidence for the Gardner Transition in Structural Glasses?
    Geirhos K, Lunkenheimer P, Loidl A.
    Phys Rev Lett; 2018 Feb 23; 120(8):085705. PubMed ID: 29543001
    [Abstract] [Full Text] [Related]

  • 2. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H, Leheny RL.
    J Chem Phys; 2006 Jun 07; 124(21):214503. PubMed ID: 16774419
    [Abstract] [Full Text] [Related]

  • 3. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH, Fujita T, Aji DP, Matsuura M, Chen MW.
    Nat Commun; 2014 Jun 07; 5():3238. PubMed ID: 24488115
    [Abstract] [Full Text] [Related]

  • 4. Relation between the activation energy of the Johari-Goldstein beta relaxation and T(g) of glass formers.
    Ngai KL, Capaccioli S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar 07; 69(3 Pt 1):031501. PubMed ID: 15089297
    [Abstract] [Full Text] [Related]

  • 5. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation?
    Schneider U, Brand R, Lunkenheimer P, Loidl A.
    Phys Rev Lett; 2000 Jun 12; 84(24):5560-3. PubMed ID: 10990994
    [Abstract] [Full Text] [Related]

  • 6. Effect of physical aging on the Johari-Goldstein and alpha relaxations of D-sorbitol: a study by thermally stimulated depolarization currents.
    Moura Ramos JJ, Diogo HP, Pinto SS.
    J Chem Phys; 2007 Apr 14; 126(14):144506. PubMed ID: 17444722
    [Abstract] [Full Text] [Related]

  • 7. Difference and similarity of dielectric relaxation processes among polyols.
    Minoguchi A, Kitai K, Nozaki R.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep 14; 68(3 Pt 1):031501. PubMed ID: 14524771
    [Abstract] [Full Text] [Related]

  • 8. Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory.
    Lunkenheimer P, Pardo LC, Köhler M, Loidl A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar 14; 77(3 Pt 1):031506. PubMed ID: 18517387
    [Abstract] [Full Text] [Related]

  • 9. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols.
    Yomogida Y, Minoguchi A, Nozaki R.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr 14; 73(4 Pt 1):041510. PubMed ID: 16711812
    [Abstract] [Full Text] [Related]

  • 10. Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose.
    Kaminska E, Tarnacka M, Kaminski K, Ngai KL, Paluch M.
    Eur J Pharm Biopharm; 2015 Nov 14; 97(Pt A):185-91. PubMed ID: 26428937
    [Abstract] [Full Text] [Related]

  • 11. Coupling of Caged Molecule Dynamics to JG β-Relaxation: I.
    Capaccioli S, Ngai KL, Thayyil MS, Prevosto D.
    J Phys Chem B; 2015 Jul 16; 119(28):8800-8. PubMed ID: 26090692
    [Abstract] [Full Text] [Related]

  • 12. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B, Maggi C, Christensen T, Dyre JC.
    J Chem Phys; 2008 Nov 14; 129(18):184502. PubMed ID: 19045409
    [Abstract] [Full Text] [Related]

  • 13. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL, Capaccioli S, Prevosto D, Wang LM.
    J Phys Chem B; 2015 Sep 24; 119(38):12502-18. PubMed ID: 26317769
    [Abstract] [Full Text] [Related]

  • 14. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses.
    Mehta M, Ragoonanan V, McKenna GB, Suryanarayanan R.
    Mol Pharm; 2016 Apr 04; 13(4):1267-77. PubMed ID: 26895136
    [Abstract] [Full Text] [Related]

  • 15. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E, Kaminski K, Paluch M, Ngai KL.
    J Chem Phys; 2006 Apr 28; 124(16):164511. PubMed ID: 16674150
    [Abstract] [Full Text] [Related]

  • 16. Source of JG-Relaxation in the Entropy of Glass.
    Johari GP.
    J Phys Chem B; 2019 Apr 04; 123(13):3010-3023. PubMed ID: 30807174
    [Abstract] [Full Text] [Related]

  • 17. Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein β-Relaxation in Molecular Glasses.
    Ngai KL, Wang LM, Yu HB.
    J Phys Chem Lett; 2017 Jun 15; 8(12):2739-2744. PubMed ID: 28585827
    [Abstract] [Full Text] [Related]

  • 18. Glassy dynamics under superhigh pressure.
    Pronin AA, Kondrin MV, Lyapin AG, Brazhkin VV, Volkov AA, Lunkenheimer P, Loidl A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr 15; 81(4 Pt 1):041503. PubMed ID: 20481727
    [Abstract] [Full Text] [Related]

  • 19. Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids.
    Qiao J, Casalini R, Pelletier JM, Kato H.
    J Phys Chem B; 2014 Apr 03; 118(13):3720-30. PubMed ID: 24611812
    [Abstract] [Full Text] [Related]

  • 20. Molecular mobility in the supercooled and glassy states of nizatidine and perphenazine.
    Sailaja U, Shahin Thayyil M, Krishna Kumar NS, Govindaraj G, Ngai KL.
    Eur J Pharm Sci; 2017 Mar 01; 99():147-151. PubMed ID: 27916696
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.