These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 29544279
1. Linear approximations of global behaviors in nonlinear systems with moderate or strong noise. Liang J, Din A, Zhou T. J Chem Phys; 2018 Mar 14; 148(10):104105. PubMed ID: 29544279 [Abstract] [Full Text] [Related]
2. Detecting critical transitions in the case of moderate or strong noise by binomial moments. Din A, Liang J, Zhou T. Phys Rev E; 2018 Jul 14; 98(1-1):012114. PubMed ID: 30110757 [Abstract] [Full Text] [Related]
3. Probability density function method for Langevin equations with colored noise. Wang P, Tartakovsky AM, Tartakovsky DM. Phys Rev Lett; 2013 Apr 05; 110(14):140602. PubMed ID: 25166972 [Abstract] [Full Text] [Related]
4. A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. Grima R. J Chem Phys; 2012 Apr 21; 136(15):154105. PubMed ID: 22519313 [Abstract] [Full Text] [Related]
5. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system. Brett T, Galla T. J Chem Phys; 2014 Mar 28; 140(12):124112. PubMed ID: 24697429 [Abstract] [Full Text] [Related]
6. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Liu R, Chen P, Aihara K, Chen L. Sci Rep; 2015 Dec 09; 5():17501. PubMed ID: 26647650 [Abstract] [Full Text] [Related]
7. Novel moment closure approximations in stochastic epidemics. Krishnarajah I, Cook A, Marion G, Gibson G. Bull Math Biol; 2005 Jul 09; 67(4):855-73. PubMed ID: 15893556 [Abstract] [Full Text] [Related]
8. Bimodality in gene expression without feedback: from Gaussian white noise to log-normal coloured noise. Aquino G, Rocco A. Math Biosci Eng; 2020 Oct 16; 17(6):6993-7017. PubMed ID: 33378885 [Abstract] [Full Text] [Related]
9. Solution of quantum Langevin equation: approximations, theoretical and numerical aspects. Banerjee D, Bag BC, Banik SK, Ray DS. J Chem Phys; 2004 May 15; 120(19):8960-72. PubMed ID: 15267831 [Abstract] [Full Text] [Related]
10. Koopman operator and its approximations for systems with symmetries. Salova A, Emenheiser J, Rupe A, Crutchfield JP, D'Souza RM. Chaos; 2019 Sep 15; 29(9):093128. PubMed ID: 31575142 [Abstract] [Full Text] [Related]
11. Probability densities of periodically driven noisy systems: an approximation scheme incorporating linear-response and adiabatic theory. Evstigneev M, Reimann P. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct 15; 72(4 Pt 2):045101. PubMed ID: 16383450 [Abstract] [Full Text] [Related]
12. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R, Thomas P, Straube AV. J Chem Phys; 2011 Aug 28; 135(8):084103. PubMed ID: 21895155 [Abstract] [Full Text] [Related]
13. Probabilistic density function method for nonlinear dynamical systems driven by colored noise. Barajas-Solano DA, Tartakovsky AM. Phys Rev E; 2016 May 28; 93(5):052121. PubMed ID: 27300844 [Abstract] [Full Text] [Related]
14. Variational superposed Gaussian approximation for time-dependent solutions of Langevin equations. Hasegawa Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr 28; 91(4):042912. PubMed ID: 25974567 [Abstract] [Full Text] [Related]
15. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey. Stano P, Lendek Z, Braaksma J, Babuska R, de Keizer C, den Dekker AJ. IEEE Trans Cybern; 2013 Dec 28; 43(6):1607-24. PubMed ID: 23757593 [Abstract] [Full Text] [Related]
16. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. Wu F, Tian T, Rawlings JB, Yin G. J Chem Phys; 2016 May 07; 144(17):174112. PubMed ID: 27155630 [Abstract] [Full Text] [Related]
17. Stochastic analysis of complex reaction networks using binomial moment equations. Barzel B, Biham O. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep 07; 86(3 Pt 1):031126. PubMed ID: 23030885 [Abstract] [Full Text] [Related]
18. Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. Sargsyan S, Brunton SL, Kutz JN. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep 07; 92(3):033304. PubMed ID: 26465583 [Abstract] [Full Text] [Related]
19. An adaptive stepsize method for the chemical Langevin equation. Ilie S, Teslya A. J Chem Phys; 2012 May 14; 136(18):184101. PubMed ID: 22583271 [Abstract] [Full Text] [Related]
20. Stochastic processes with distributed delays: chemical Langevin equation and linear-noise approximation. Brett T, Galla T. Phys Rev Lett; 2013 Jun 21; 110(25):250601. PubMed ID: 23829723 [Abstract] [Full Text] [Related] Page: [Next] [New Search]