These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
245 related items for PubMed ID: 29548454
41. Evaluation of the moisture prediction capability of near-infrared and attenuated total reflectance fourier transform infrared spectroscopy using superdisintegrants as model compounds. Uppaluri SG, Bompelliwar SK, Johnson PR, Gupta MR, Al-Achi A, Stagner WC, Haware RV. J Pharm Sci; 2014 Dec; 103(12):4012-4020. PubMed ID: 25332106 [Abstract] [Full Text] [Related]
44. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Silva SD, Feliciano RP, Boas LV, Bronze MR. Food Chem; 2014 May 01; 150():489-93. PubMed ID: 24360480 [Abstract] [Full Text] [Related]
45. FTIR-ATR determination of solid non fat (SNF) in raw milk using PLS and SVM chemometric methods. Bassbasi M, Platikanov S, Tauler R, Oussama A. Food Chem; 2014 Mar 01; 146():250-4. PubMed ID: 24176339 [Abstract] [Full Text] [Related]
46. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar-to-honey transformation pathway using FTIR-ATR spectroscopy. Svečnjak L, Prđun S, Rogina J, Bubalo D, Jerković I. Food Chem; 2017 Oct 01; 232():286-294. PubMed ID: 28490077 [Abstract] [Full Text] [Related]
47. Optimizing genetic algorithm-partial least squares model of soluble solids content in Fukumoto navel orange based on visible-near-infrared transmittance spectroscopy using discrete wavelet transform. Song J, Li G, Yang X. J Sci Food Agric; 2019 Aug 30; 99(11):4898-4903. PubMed ID: 30924947 [Abstract] [Full Text] [Related]
50. Prediction of melanin content of Fonsecaea pedrosoi using Fourier transform infrared spectroscopy (FTIR) and chemometrics. Koehler A, de Moraes PC, Heidrich D, Scroferneker ML, Ferrão MF, Corbellini VA. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr 05; 310():123945. PubMed ID: 38295590 [Abstract] [Full Text] [Related]
51. High throughput FT-MIR indirect analysis of sugars and acids in watermelon. Martí R, Sánchez G, Valcárcel M, Roselló S, Cebolla-Cornejo J. Food Chem; 2019 Dec 01; 300():125227. PubMed ID: 31351262 [Abstract] [Full Text] [Related]
52. Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements? Yang Y, Hettinga KA, Erasmus SW, Pustjens AM, van Ruth SM. Food Res Int; 2020 Oct 01; 136():109543. PubMed ID: 32846598 [Abstract] [Full Text] [Related]
54. Combining Fourier Transform Mid-Infrared Spectroscopy with Chemometric Methods to Detect Adulterations in Milk Powder. Feng L, Zhu S, Chen S, Bao Y, He Y. Sensors (Basel); 2019 Jul 03; 19(13):. PubMed ID: 31277225 [Abstract] [Full Text] [Related]
55. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks. Dixit V, Tewari JC, Cho BK, Irudayaraj JM. Appl Spectrosc; 2005 Dec 03; 59(12):1553-61. PubMed ID: 16390596 [Abstract] [Full Text] [Related]
57. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Lu Y, Du C, Yu C, Zhou J. J Sci Food Agric; 2014 Aug 03; 94(11):2239-45. PubMed ID: 24374740 [Abstract] [Full Text] [Related]
58. FTIR-ATR infrared spectroscopy for the detection of ochratoxin A in dried vine fruit. Galvis-Sánchez AC, Barros A, Delgadillo I. Food Addit Contam; 2007 Nov 03; 24(11):1299-305. PubMed ID: 17852382 [Abstract] [Full Text] [Related]
60. Assessment of dentifrice adulteration with diethylene glycol by means of ATR-FTIR spectroscopy and chemometrics. López-Sánchez M, Domínguez-Vidal A, Ayora-Cañada MJ, Molina-Díaz A. Anal Chim Acta; 2008 Jul 14; 620(1-2):113-9. PubMed ID: 18558131 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]