These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 29550702
21. La/LaF3 co-modified MIL-53(Cr) as an efficient adsorbent for the removal of tetracycline. Ni Y, Yang J, Sun L, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X. J Hazard Mater; 2022 Mar 15; 426():128112. PubMed ID: 34965495 [Abstract] [Full Text] [Related]
22. Benign Synthesis of Metal-organic Framework (MIL-101-Cr) and Evaluation of Carbon- dioxide Adsorption Behaviour Employing Adsorption Isotherm Models. Singh A, Kayal S. Curr Org Synth; 2022 Aug 06; 19(5):673-684. PubMed ID: 34970957 [Abstract] [Full Text] [Related]
23. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. Oudi S, Oveisi AR, Daliran S, Khajeh M, Teymoori E. J Colloid Interface Sci; 2020 Mar 01; 561():782-792. PubMed ID: 31761467 [Abstract] [Full Text] [Related]
25. Postsynthetic Functionalization of Mg-MOF-74 with Tetraethylenepentamine: Structural Characterization and Enhanced CO2 Adsorption. Su X, Bromberg L, Martis V, Simeon F, Huq A, Hatton TA. ACS Appl Mater Interfaces; 2017 Mar 29; 9(12):11299-11306. PubMed ID: 28244732 [Abstract] [Full Text] [Related]
26. Observation of Olefin/Paraffin Selectivity in Azo Compound and Its Application into a Metal-Organic Framework. Kim SY, Yoon TU, Kang JH, Kim AR, Kim TH, Kim SI, Park W, Kim KC, Bae YS. ACS Appl Mater Interfaces; 2018 Aug 15; 10(32):27521-27530. PubMed ID: 30040880 [Abstract] [Full Text] [Related]
27. Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. Lei L, Cheng Y, Chen C, Kosari M, Jiang Z, He C. J Colloid Interface Sci; 2022 Apr 15; 612():132-145. PubMed ID: 34992014 [Abstract] [Full Text] [Related]
28. Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide. Jiang Y, Li D, Zhao Y, Sun J. J Colloid Interface Sci; 2022 Jul 15; 618():22-33. PubMed ID: 35325697 [Abstract] [Full Text] [Related]
29. In-situ fabrication of ionic liquids/MIL-68(In)-NH2 photocatalyst for improving visible-light photocatalytic degradation of doxycycline hydrochloride. Li D, Hua T, Li X, Cheng J, Du K, Hu Y, Chen Y. Chemosphere; 2022 Apr 15; 292():133461. PubMed ID: 34974040 [Abstract] [Full Text] [Related]
30. Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. Andrés MA, Benzaqui M, Serre C, Steunou N, Gascón I. J Colloid Interface Sci; 2018 Jun 01; 519():88-96. PubMed ID: 29482100 [Abstract] [Full Text] [Related]
31. Substituent-Induced Electron-Transfer Strategy for Selective Adsorption of N2 in MIL-101(Cr)-X Metal-Organic Frameworks. Zhang F, Shang H, Wang L, Ma L, Li K, Zhang Y, Yang J, Li L, Li J. ACS Appl Mater Interfaces; 2022 Jan 12; 14(1):2146-2154. PubMed ID: 34935344 [Abstract] [Full Text] [Related]
32. Highly Active Ultrasmall Ni Nanoparticle Embedded Inside a Robust Metal-Organic Framework: Remarkably Improved Adsorption, Selectivity, and Solvent-Free Efficient Fixation of CO2. Singh M, Solanki P, Patel P, Mondal A, Neogi S. Inorg Chem; 2019 Jun 17; 58(12):8100-8110. PubMed ID: 31144809 [Abstract] [Full Text] [Related]
33. Comparisons of glyphosate adsorption properties of different functional Cr-based metal-organic frameworks. Feng D, Xia Y. J Sep Sci; 2018 Feb 17; 41(3):732-739. PubMed ID: 29159896 [Abstract] [Full Text] [Related]
34. MIL-101(Cr)/aminoclay nanocomposites for conversion of CO2 into cyclic carbonates. Jyoti, Kumari S, Chakraborty S, Kanoo P, Kumar V, Chakraborty A. Dalton Trans; 2024 Oct 01; 53(38):15815-15825. PubMed ID: 38771593 [Abstract] [Full Text] [Related]
35. Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization. Khutia A, Janiak C. Dalton Trans; 2014 Jan 21; 43(3):1338-47. PubMed ID: 24196659 [Abstract] [Full Text] [Related]
36. Implications of Defect Density and Polymer Interactions for CO2 Capture on Amine-Functionalized MIL-101(Cr). Yang RA, Cho S, Hughes SN, Sarazen ML. ChemSusChem; 2024 Sep 23; 17(18):e202400249. PubMed ID: 38627886 [Abstract] [Full Text] [Related]
37. Strategies for Enhancing the Catalytic Performance of Metal-Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates. Taherimehr M, Van de Voorde B, Wee LH, Martens JA, De Vos DE, Pescarmona PP. ChemSusChem; 2017 Mar 22; 10(6):1283-1291. PubMed ID: 27991727 [Abstract] [Full Text] [Related]
38. Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks. Sarker M, Song JY, Jeong AR, Min KS, Jhung SH. J Hazard Mater; 2018 Feb 15; 344():593-601. PubMed ID: 29102642 [Abstract] [Full Text] [Related]
39. Theoretical Investigations on MIL-100(M) (M=Cr, Sc, Fe) with High Adsorption Selectivity for Nitrogen and Carbon Dioxide over Methane. Huang F, Zhang X, Liu W, Gao J, Sun L. Chem Asian J; 2023 Jan 03; 18(1):e202200985. PubMed ID: 36326487 [Abstract] [Full Text] [Related]
40. Rational Design of a Bifunctional, Two-Fold Interpenetrated ZnII -Metal-Organic Framework for Selective Adsorption of CO2 and Efficient Aqueous Phase Sensing of 2,4,6-Trinitrophenol. Singh Dhankhar S, Sharma N, Kumar S, Dhilip Kumar TJ, Nagaraja CM. Chemistry; 2017 Nov 16; 23(64):16204-16212. PubMed ID: 28925520 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]