These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 29556395

  • 1. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL, Wakefield ED, Phillips RA.
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [Abstract] [Full Text] [Related]

  • 2. Observations and models of across-wind flight speed of the wandering albatross.
    Richardson PL, Wakefield ED.
    R Soc Open Sci; 2022 Nov; 9(11):211364. PubMed ID: 36465680
    [Abstract] [Full Text] [Related]

  • 3. Wandering albatrosses exert high take-off effort only when both wind and waves are gentle.
    Uesaka L, Goto Y, Naruoka M, Weimerskirch H, Sato K, Sakamoto KQ.
    Elife; 2023 Oct 10; 12():. PubMed ID: 37814539
    [Abstract] [Full Text] [Related]

  • 4. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird.
    Clay TA, Joo R, Weimerskirch H, Phillips RA, den Ouden O, Basille M, Clusella-Trullas S, Assink JD, Patrick SC.
    J Anim Ecol; 2020 Aug 10; 89(8):1811-1823. PubMed ID: 32557603
    [Abstract] [Full Text] [Related]

  • 5. Albatrosses employ orientation and routing strategies similar to yacht racers.
    Goto Y, Weimerskirch H, Fukaya K, Yoda K, Naruoka M, Sato K.
    Proc Natl Acad Sci U S A; 2024 Jun 04; 121(23):e2312851121. PubMed ID: 38771864
    [Abstract] [Full Text] [Related]

  • 6. Experimental verification of dynamic soaring in albatrosses.
    Sachs G, Traugott J, Nesterova AP, Bonadonna F.
    J Exp Biol; 2013 Nov 15; 216(Pt 22):4222-32. PubMed ID: 24172888
    [Abstract] [Full Text] [Related]

  • 7. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.
    Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, Cruz S, Proaño C, Takekawa JY, Newman SH, Waldenström J, Bengtsson D, Kays R, Wikelski M, Bohrer G.
    Mov Ecol; 2013 Nov 15; 1(1):4. PubMed ID: 25709818
    [Abstract] [Full Text] [Related]

  • 8. Optimal dynamic soaring consists of successive shallow arcs.
    Bousquet GD, Triantafyllou MS, Slotine JE.
    J R Soc Interface; 2017 Oct 15; 14(135):. PubMed ID: 28978747
    [Abstract] [Full Text] [Related]

  • 9. Going against the flow: bumblebees prefer to fly upwind and display more variable kinematics when flying downwind.
    Combes SA, Gravish N, Gagliardi SF.
    J Exp Biol; 2023 Apr 25; 226(Suppl_1):. PubMed ID: 37070947
    [Abstract] [Full Text] [Related]

  • 10. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
    Liu DN, Hou ZX, Guo Z, Yang XX, Gao XZ.
    Bioinspir Biomim; 2017 Jan 30; 12(1):016014. PubMed ID: 27991431
    [Abstract] [Full Text] [Related]

  • 11. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.
    Yonehara Y, Goto Y, Yoda K, Watanuki Y, Young LC, Weimerskirch H, Bost CA, Sato K.
    Proc Natl Acad Sci U S A; 2016 Aug 09; 113(32):9039-44. PubMed ID: 27457932
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Evidence for olfactory search in wandering albatross, Diomedea exulans.
    Nevitt GA, Losekoot M, Weimerskirch H.
    Proc Natl Acad Sci U S A; 2008 Mar 25; 105(12):4576-81. PubMed ID: 18326025
    [Abstract] [Full Text] [Related]

  • 17. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.
    Sachs G, Traugott J, Nesterova AP, Dell'Omo G, Kümmeth F, Heidrich W, Vyssotski AL, Bonadonna F.
    PLoS One; 2012 Mar 25; 7(9):e41449. PubMed ID: 22957014
    [Abstract] [Full Text] [Related]

  • 18. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time.
    Becciu P, Troupin D, Dinevich L, Leshem Y, Sapir N.
    Mov Ecol; 2023 Jul 27; 11(1):44. PubMed ID: 37501209
    [Abstract] [Full Text] [Related]

  • 19. How did extinct giant birds and pterosaurs fly? A comprehensive modeling approach to evaluate soaring performance.
    Goto Y, Yoda K, Weimerskirch H, Sato K.
    PNAS Nexus; 2022 Mar 27; 1(1):pgac023. PubMed ID: 36712794
    [Abstract] [Full Text] [Related]

  • 20. Gliding flight in a jackdaw: a wind tunnel study.
    Rosén M, Hedenström A.
    J Exp Biol; 2001 Mar 27; 204(Pt 6):1153-66. PubMed ID: 11222131
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.