These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
287 related items for PubMed ID: 29556395
21. Seabird morphology determines operational wind speeds, tolerable maxima, and responses to extremes. Nourani E, Safi K, de Grissac S, Anderson DJ, Cole NC, Fell A, Grémillet D, Lempidakis E, Lerma M, McKee JL, Pichegru L, Provost P, Rattenborg NC, Ryan PG, Santos CD, Schoombie S, Tatayah V, Weimerskirch H, Wikelski M, Shepard ELC. Curr Biol; 2023 Mar 27; 33(6):1179-1184.e3. PubMed ID: 36827987 [Abstract] [Full Text] [Related]
22. A novel hypothesis for how albatrosses optimize their flight physics in real-time: an extremum seeking model and control for dynamic soaring. Pokhrel S, Eisa SA. Bioinspir Biomim; 2022 Dec 13; 18(1):. PubMed ID: 36594630 [Abstract] [Full Text] [Related]
23. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird. Gibb R, Shoji A, Fayet AL, Perrins CM, Guilford T, Freeman R. J R Soc Interface; 2017 Jul 13; 14(132):. PubMed ID: 28701505 [Abstract] [Full Text] [Related]
26. The effect of optic flow cues on honeybee flight control in wind. Baird E, Boeddeker N, Srinivasan MV. Proc Biol Sci; 2021 Jan 27; 288(1943):20203051. PubMed ID: 33468001 [Abstract] [Full Text] [Related]
27. Interactive effects of body mass changes and species-specific morphology on flight behavior of chick-rearing Antarctic fulmarine petrels under diurnal wind patterns. Dehnhard N, Klekociuk AR, Emmerson L. Ecol Evol; 2021 May 27; 11(9):4972-4991. PubMed ID: 33976863 [Abstract] [Full Text] [Related]
28. Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea. Kempton JA, Wynn J, Bond S, Evry J, Fayet AL, Gillies N, Guilford T, Kavelaars M, Juarez-Martinez I, Padget O, Rutz C, Shoji A, Syposz M, Taylor GK. Sci Adv; 2022 Jun 03; 8(22):eabo0200. PubMed ID: 35648862 [Abstract] [Full Text] [Related]
30. Shadowed by scale: subtle behavioral niche partitioning in two sympatric, tropical breeding albatross species. Conners MG, Hazen EL, Costa DP, Shaffer SA. Mov Ecol; 2015 Jun 03; 3(1):28. PubMed ID: 26392862 [Abstract] [Full Text] [Related]
31. Energetic influence on gull flight strategy selection. Shamoun-Baranes J, van Loon E. J Exp Biol; 2006 Sep 03; 209(Pt 18):3489-98. PubMed ID: 16943489 [Abstract] [Full Text] [Related]
32. Impact of changing wind conditions on foraging and incubation success in male and female wandering albatrosses. Cornioley T, Börger L, Ozgul A, Weimerskirch H. J Anim Ecol; 2016 Sep 03; 85(5):1318-27. PubMed ID: 27187714 [Abstract] [Full Text] [Related]
33. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus. Bäckman J, Alerstam T. Proc Biol Sci; 2001 May 22; 268(1471):1081-7. PubMed ID: 11375093 [Abstract] [Full Text] [Related]
34. Similar foraging energetics of two sympatric albatrosses despite contrasting life histories and wind-mediated foraging strategies. Kroeger CE, Crocker DE, Orben RA, Thompson DR, Torres LG, Sagar PM, Sztukowski LA, Andriese T, Costa DP, Shaffer SA. J Exp Biol; 2020 Dec 02; 223(Pt 23):. PubMed ID: 33268565 [Abstract] [Full Text] [Related]
35. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. Sato K, Sakamoto KQ, Watanuki Y, Takahashi A, Katsumata N, Bost CA, Weimerskirch H. PLoS One; 2009 Dec 02; 4(4):e5400. PubMed ID: 19401767 [Abstract] [Full Text] [Related]
36. Gadfly petrels use knowledge of the windscape, not memorized foraging patches, to optimize foraging trips on ocean-wide scales. Ventura F, Granadeiro JP, Padget O, Catry P. Proc Biol Sci; 2020 Jan 15; 287(1918):20191775. PubMed ID: 31937218 [Abstract] [Full Text] [Related]