These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 29556395

  • 41. Ecology of tern flight in relation to wind, topography and aerodynamic theory.
    Hedenström A, Åkesson S.
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep 26; 371(1704):. PubMed ID: 27528786
    [Abstract] [Full Text] [Related]

  • 42. Wave-slope soaring of the brown pelican.
    Stokes IA, Lucas AJ.
    Mov Ecol; 2021 Mar 22; 9(1):13. PubMed ID: 33752747
    [Abstract] [Full Text] [Related]

  • 43. Risk-sensitive response of soaring birds to crosswind over dangerous sea highlights age-specific differences in migratory performance.
    Santos CD, Sapir N, Becciu P, Granadeiro JP, Wikelski M.
    Proc Biol Sci; 2024 May 22; 291(2023):20240454. PubMed ID: 38807519
    [Abstract] [Full Text] [Related]

  • 44. European shags optimize their flight behavior according to wind conditions.
    Kogure Y, Sato K, Watanuki Y, Wanless S, Daunt F.
    J Exp Biol; 2016 Feb 22; 219(Pt 3):311-8. PubMed ID: 26847559
    [Abstract] [Full Text] [Related]

  • 45. Boldness predicts plasticity in flight responses to winds.
    Gillies N, Weimerskirch H, Thorley J, Clay TA, Martín López LM, Joo R, Basille M, Patrick SC.
    J Anim Ecol; 2023 Sep 22; 92(9):1730-1742. PubMed ID: 37365766
    [Abstract] [Full Text] [Related]

  • 46. Aerodynamics of gliding flight in common swifts.
    Henningsson P, Hedenström A.
    J Exp Biol; 2011 Feb 01; 214(Pt 3):382-93. PubMed ID: 21228197
    [Abstract] [Full Text] [Related]

  • 47. Opportunistic soaring by birds suggests new opportunities for atmospheric energy harvesting by flying robots.
    Mohamed A, Taylor GK, Watkins S, Windsor SP.
    J R Soc Interface; 2022 Nov 01; 19(196):20220671. PubMed ID: 36415974
    [Abstract] [Full Text] [Related]

  • 48. Effect of wind speed on the pheromone-mediated behavior of sexual morphs of the potato aphid, Macrosiphum euphorbiae (Thomas) under laboratory and field conditions.
    Goldansaz SH, McNeil JN.
    J Chem Ecol; 2006 Aug 01; 32(8):1719-29. PubMed ID: 16900427
    [Abstract] [Full Text] [Related]

  • 49. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW, Woodworth BK, Taylor PD, Norris DR.
    Mov Ecol; 2015 Aug 01; 3(1):19. PubMed ID: 26279850
    [Abstract] [Full Text] [Related]

  • 50. Soaring energetics and glide performance in a moving atmosphere.
    Taylor GK, Reynolds KV, Thomas AL.
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep 26; 371(1704):. PubMed ID: 27528788
    [Abstract] [Full Text] [Related]

  • 51. A new algorithm quantifies the roles of wind and midge flight activity in the bluetongue epizootic in northwest Europe.
    Sedda L, Brown HE, Purse BV, Burgin L, Gloster J, Rogers DJ.
    Proc Biol Sci; 2012 Jun 22; 279(1737):2354-62. PubMed ID: 22319128
    [Abstract] [Full Text] [Related]

  • 52. Commuting fruit bats beneficially modulate their flight in relation to wind.
    Sapir N, Horvitz N, Dechmann DK, Fahr J, Wikelski M.
    Proc Biol Sci; 2014 May 07; 281(1782):20140018. PubMed ID: 24648227
    [Abstract] [Full Text] [Related]

  • 53. Coupling instantaneous energy-budget models and behavioural mode analysis to estimate optimal foraging strategy: an example with wandering albatrosses.
    Louzao M, Wiegand T, Bartumeus F, Weimerskirch H.
    Mov Ecol; 2014 May 07; 2(1):8. PubMed ID: 25520818
    [Abstract] [Full Text] [Related]

  • 54. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
    Tobalske BW, Peacock WL, Dial KP.
    J Exp Biol; 1999 Jul 07; 202 (Pt 13)():1725-39. PubMed ID: 10359676
    [Abstract] [Full Text] [Related]

  • 55. Barrier crossings and winds shape daily travel schedules and speeds of a flight generalist.
    Lopez-Ricaurte L, Vansteelant WMG, Hernández-Pliego J, García-Silveira D, Bermejo-Bermejo A, Casado S, Cecere JG, de la Puente J, Garcés-Toledano F, Martínez-Dalmau J, Ortega A, Rodríguez-Moreno B, Rubolini D, Sarà M, Bustamante J.
    Sci Rep; 2021 Jun 08; 11(1):12044. PubMed ID: 34103580
    [Abstract] [Full Text] [Related]

  • 56. Potential air toxics hot spots in truck terminals and cabs.
    Smith TJ, Davis ME, Hart JE, Blicharz A, Laden F, Garshick E, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2012 Dec 08; (172):5-82. PubMed ID: 23409510
    [Abstract] [Full Text] [Related]

  • 57. Airplane tracking documents the fastest flight speeds recorded for bats.
    McCracken GF, Safi K, Kunz TH, Dechmann DK, Swartz SM, Wikelski M.
    R Soc Open Sci; 2016 Nov 08; 3(11):160398. PubMed ID: 28018618
    [Abstract] [Full Text] [Related]

  • 58. Air speed and direction affect metabolic and thermoregulatory responses during walking and running in a temperate environment.
    Yamashita N, Ly CL, Smallcombe JW, Hodder S, Havenith G.
    J Appl Physiol (1985); 2024 Sep 01; 137(3):554-568. PubMed ID: 38867667
    [Abstract] [Full Text] [Related]

  • 59. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N, Wikelski M, McCue MD, Pinshow B, Nathan R.
    PLoS One; 2010 Nov 11; 5(11):e13956. PubMed ID: 21085655
    [Abstract] [Full Text] [Related]

  • 60. A novel approach to seabird posture estimation: finding roll and yaw angles of dynamic soaring albatrosses using tri-axial magnetometers.
    Schoombie S, Wilson RP, Ryan PG.
    R Soc Open Sci; 2023 Dec 11; 10(12):231363. PubMed ID: 38077216
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.