These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 29562921

  • 1. Gray blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of myocardial scar.
    Fahmy AS, Neisius U, Tsao CW, Berg S, Goddu E, Pierce P, Basha TA, Ngo L, Manning WJ, Nezafat R.
    J Cardiovasc Magn Reson; 2018 Mar 22; 20(1):22. PubMed ID: 29562921
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar.
    Francis R, Kellman P, Kotecha T, Baggiano A, Norrington K, Martinez-Naharro A, Nordin S, Knight DS, Rakhit RD, Lockie T, Hawkins PN, Moon JC, Hausenloy DJ, Xue H, Hansen MS, Fontana M.
    J Cardiovasc Magn Reson; 2017 Nov 21; 19(1):91. PubMed ID: 29162123
    [Abstract] [Full Text] [Related]

  • 5. Improved dark blood late gadolinium enhancement (DB-LGE) imaging using an optimized joint inversion preparation and T2 magnetization preparation.
    Basha TA, Tang MC, Tsao C, Tschabrunn CM, Anter E, Manning WJ, Nezafat R.
    Magn Reson Med; 2018 Jan 21; 79(1):351-360. PubMed ID: 28382726
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Implications of bipolar voltage mapping and magnetic resonance imaging resolution in biventricular scar characterization after myocardial infarction.
    López-Yunta M, León DG, Alfonso-Almazán JM, Marina-Breysse M, Quintanilla JG, Sánchez-González J, Galán-Arriola C, Cañadas-Godoy V, Enríquez-Vázquez D, Torres C, Ibáñez B, Pérez-Villacastín J, Pérez-Castellano N, Jalife J, Vázquez M, Aguado-Sierra J, Filgueiras-Rama D.
    Europace; 2019 Jan 01; 21(1):163-174. PubMed ID: 30239689
    [Abstract] [Full Text] [Related]

  • 10. Feasibility of gray-blood late gadolinium enhancement evaluation in young patients with congenital and acquired heart disease.
    Gonzalez de Alba C, Moghari MH, Browne LP, Friesen RM, Fonseca B, Malone LJ.
    Front Cardiovasc Med; 2023 Jan 01; 10():1269412. PubMed ID: 37915741
    [Abstract] [Full Text] [Related]

  • 11. Impact of late gadolinium enhancement image acquisition resolution on neural network based automatic scar segmentation.
    Hoh T, Margolis I, Weine J, Joyce T, Manka R, Weisskopf M, Cesarovic N, Fuetterer M, Kozerke S.
    J Cardiovasc Magn Reson; 2024 Jan 01; 26(1):101031. PubMed ID: 38431078
    [Abstract] [Full Text] [Related]

  • 12. Novel Magnetic Resonance Late Gadolinium Enhancement With Fixed Short Inversion Time in Ischemic Myocardial Scars.
    Polacin M, Gastl M, Kapos I, Eberhard M, Weber L, Gotschy A, von Spiczak J, Kozerke S, Alkadhi H, Manka R.
    Invest Radiol; 2020 Jul 01; 55(7):445-450. PubMed ID: 32459683
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Synthetic late gadolinium enhancement cardiac magnetic resonance for diagnosing myocardial scar.
    Abdula G, Nickander J, Sörensson P, Lundin M, Kellman P, Sigfridsson A, Ugander M.
    Scand Cardiovasc J; 2018 Jun 01; 52(3):127-132. PubMed ID: 29544374
    [Abstract] [Full Text] [Related]

  • 15. Synthetic multi-contrast late gadolinium enhancement imaging using post-contrast magnetic resonance fingerprinting.
    Rashid I, Al-Kindi S, Rajagopalan V, Walker J, Rajagopalan S, Seiberlich N, Hamilton JI.
    NMR Biomed; 2024 Jan 01; 37(1):e5043. PubMed ID: 37740596
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T1-rho-prepared late gadolinium enhancement MRI.
    Sridi S, Nuñez-Garcia M, Sermesant M, Maillot A, Hamrani DE, Magat J, Naulin J, Laurent F, Montaudon M, Jaïs P, Stuber M, Cochet H, Bustin A.
    Diagn Interv Imaging; 2022 Dec 01; 103(12):607-617. PubMed ID: 35961843
    [Abstract] [Full Text] [Related]

  • 18. The impact of dark-blood versus conventional bright-blood late gadolinium enhancement on the myocardial ischemic burden.
    Franks R, Holtackers RJ, Alskaf E, Nazir MS, Clapp B, Wildberger JE, Perera D, Plein S, Chiribiri A.
    Eur J Radiol; 2021 Nov 01; 144():109947. PubMed ID: 34700091
    [Abstract] [Full Text] [Related]

  • 19. Dark blood late enhancement imaging.
    Kellman P, Xue H, Olivieri LJ, Cross RR, Grant EK, Fontana M, Ugander M, Moon JC, Hansen MS.
    J Cardiovasc Magn Reson; 2016 Nov 07; 18(1):77. PubMed ID: 27817748
    [Abstract] [Full Text] [Related]

  • 20. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction.
    Muscogiuri G, Rehwald WG, Schoepf UJ, Suranyi P, Litwin SE, De Cecco CN, Wichmann JL, Mangold S, Caruso D, Fuller SR, Bayer Nd RR, Varga-Szemes A.
    J Magn Reson Imaging; 2017 May 07; 45(5):1429-1437. PubMed ID: 27690324
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.