These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
919 related items for PubMed ID: 29563069
1. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants. Ahn H, Patel RR, Hoyt AJ, Lin ASP, Torstrick FB, Guldberg RE, Frick CP, Carpenter RD, Yakacki CM, Willett NJ. Acta Biomater; 2018 May; 72():352-361. PubMed ID: 29563069 [Abstract] [Full Text] [Related]
2. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD, Klosterhoff BS, Torstrick FB, Foley KT, Burkus JK, Lee CSD, Gall K, Guldberg RE, Safranski DL. J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [Abstract] [Full Text] [Related]
3. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE. Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [Abstract] [Full Text] [Related]
4. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Torstrick FB, Lin ASP, Potter D, Safranski DL, Sulchek TA, Gall K, Guldberg RE. Biomaterials; 2018 Dec; 185():106-116. PubMed ID: 30236838 [Abstract] [Full Text] [Related]
5. 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. Spece H, Yu T, Law AW, Marcolongo M, Kurtz SM. J Mech Behav Biomed Mater; 2020 Sep; 109():103850. PubMed ID: 32543413 [Abstract] [Full Text] [Related]
6. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EY, Yan CH, Yeung KW, Chu PK. Biomaterials; 2013 Dec; 34(37):9264-77. PubMed ID: 24041423 [Abstract] [Full Text] [Related]
7. Mechanical and in vitro investigation of a porous PEEK foam for medical device implants. Landy BC, Vangordon SB, McFetridge PS, Sikavitsas VI, Jarman-Smith M. J Appl Biomater Funct Mater; 2013 Jun 24; 11(1):e35-44. PubMed ID: 23413130 [Abstract] [Full Text] [Related]
8. Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft. Guyer RD, Abitbol JJ, Ohnmeiss DD, Yao C. Spine (Phila Pa 1976); 2016 Oct 01; 41(19):E1146-E1150. PubMed ID: 27135643 [Abstract] [Full Text] [Related]
9. Effects of Surface Topography and Chemistry on Polyether-Ether-Ketone (PEEK) and Titanium Osseointegration. Torstrick FB, Lin ASP, Safranski DL, Potter D, Sulchek T, Lee CSD, Gall K, Guldberg RE. Spine (Phila Pa 1976); 2020 Apr 15; 45(8):E417-E424. PubMed ID: 31703050 [Abstract] [Full Text] [Related]
10. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Zheng J, Zhao H, Dong E, Kang J, Liu C, Sun C, Li D, Wang L. Mater Sci Eng C Mater Biol Appl; 2021 Sep 15; 128():112333. PubMed ID: 34474884 [Abstract] [Full Text] [Related]
11. Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications. Hoyt AJ, Yakacki CM, Fertig RS, Dana Carpenter R, Frick CP. J Mech Behav Biomed Mater; 2015 Jan 15; 41():136-48. PubMed ID: 25460410 [Abstract] [Full Text] [Related]
12. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Mahjoubi H, Buck E, Manimunda P, Farivar R, Chromik R, Murshed M, Cerruti M. Acta Biomater; 2017 Jan 01; 47():149-158. PubMed ID: 27717913 [Abstract] [Full Text] [Related]
13. High-strength poly(para-phenylene) as an orthopedic biomaterial. Frick CP, DiRienzo AL, Hoyt AJ, Safranski DL, Saed M, Losty EJ, Yakacki CM. J Biomed Mater Res A; 2014 Sep 01; 102(9):3122-9. PubMed ID: 24123879 [Abstract] [Full Text] [Related]
14. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. Feng X, Ma L, Liang H, Liu X, Lei J, Li W, Wang K, Song Y, Wang B, Li G, Li S, Yang C. ACS Omega; 2020 Oct 20; 5(41):26655-26666. PubMed ID: 33110992 [Abstract] [Full Text] [Related]
15. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO4·2H2O) and antibiotics for anti-infection and enhanced osseointegration. Xue Z, Wang Z, Sun A, Huang J, Wu W, Chen M, Hao X, Huang Z, Lin X, Weng S. Mater Sci Eng C Mater Biol Appl; 2020 Jun 20; 111():110782. PubMed ID: 32279744 [Abstract] [Full Text] [Related]
16. Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant. Li S, Wang T, Hu J, Li Z, Wang B, Wang L, Zhou Z. J Mech Behav Biomed Mater; 2021 Aug 20; 120():104561. PubMed ID: 33965810 [Abstract] [Full Text] [Related]
17. Tensile behavior of porous scaffolds made from poly(para phenylene) - biomed 2013. Dirienzo AL, Yakacki CM, Safranski DL, Frick CP. Biomed Sci Instrum; 2013 Aug 20; 49():157-64. PubMed ID: 23686195 [Abstract] [Full Text] [Related]