These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 29566

  • 1. Establishment of a heat inactivation curve for Clostridium botulinum 62A toxin in beef broth.
    Losikoff ME.
    Appl Environ Microbiol; 1978 Aug; 36(2):386-8. PubMed ID: 29566
    [Abstract] [Full Text] [Related]

  • 2. Gamma-ray sterilization and residual toxicity studies of ground beef inoculated with spores of Clostridium botulinum.
    KEMPE LL, GRAIKOSKI JT.
    Appl Microbiol; 1962 Jan; 10(1):31-6. PubMed ID: 14455088
    [Abstract] [Full Text] [Related]

  • 3. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners.
    Bowen VG, Cerveny JG, Deibel RH.
    Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392
    [Abstract] [Full Text] [Related]

  • 4. Effect of frozen storage time on heat inactivation of Clostridium botulinum type E toxin.
    Yao MG, Denny CB, Bohrer CW.
    Appl Microbiol; 1973 Mar; 25(3):503-5. PubMed ID: 4572899
    [Abstract] [Full Text] [Related]

  • 5. Toxin production by Clostridium botulinum types A and B in unpasteurized cured meat products held at 15 and 27 degrees C.
    Shigehisa T, Kozaki S, Sakaguchi G.
    Nihon Juigaku Zasshi; 1984 Dec; 46(6):917-20. PubMed ID: 6394862
    [No Abstract] [Full Text] [Related]

  • 6. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.
    Golden MC, Wanless BJ, David JRD, Lineback DS, Talley RJ, Kottapalli B, Glass KA.
    J Food Prot; 2017 Aug; 80(8):1252-1258. PubMed ID: 28686492
    [Abstract] [Full Text] [Related]

  • 7. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP, Schmidt CF, Boltz JK.
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [Abstract] [Full Text] [Related]

  • 8. Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems.
    Roberts TA, Jarvis B.
    Soc Appl Bacteriol Symp Ser; 1983 Dec; 11():85-95. PubMed ID: 6359448
    [No Abstract] [Full Text] [Related]

  • 9. [Time of toxin appearance in relation to detectable changes in canned meat artificially contaminated with Clostridium botulinum B (preliminary report)].
    Palec W, Mierzejewski J.
    Rocz Panstw Zakl Hig; 1981 Dec; 32(3):223-7. PubMed ID: 7031828
    [No Abstract] [Full Text] [Related]

  • 10. Food safety objective approach for controlling Clostridium botulinum growth and toxin production in commercially sterile foods.
    Anderson NM, Larkin JW, Cole MB, Skinner GE, Whiting RC, Gorris LG, Rodriguez A, Buchanan R, Stewart CM, Hanlin JH, Keener L, Hall PA.
    J Food Prot; 2011 Nov; 74(11):1956-89. PubMed ID: 22054200
    [Abstract] [Full Text] [Related]

  • 11. Effect of toxin concentration on the heat inactivation of staphylococcal enterotoxin A in beef bouillon and in phosphate buffer.
    Denny CB, Humber JY, Bohrer CW.
    Appl Microbiol; 1971 Jun; 21(6):1064-6. PubMed ID: 4998349
    [Abstract] [Full Text] [Related]

  • 12. Thermal inactivation of type E botulinum toxin.
    Licciardello JJ, Nickerson JT, Ribich CA, Goldblith SA.
    Appl Microbiol; 1967 Mar; 15(2):249-56. PubMed ID: 5339838
    [Abstract] [Full Text] [Related]

  • 13. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media.
    Wong DM, Young-Perkins KE, Merson RL.
    Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489
    [Abstract] [Full Text] [Related]

  • 14. An improved cooked meat medium for the detection of Clostridium botulinum.
    Quagliaro DA.
    J Assoc Off Anal Chem; 1977 May; 60(3):563-9. PubMed ID: 323216
    [Abstract] [Full Text] [Related]

  • 15. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF, Mason DR, Peck MW.
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [Abstract] [Full Text] [Related]

  • 16. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis.
    Odlaug TE, Pflug IJ.
    Appl Environ Microbiol; 1979 Mar; 37(3):496-504. PubMed ID: 36843
    [Abstract] [Full Text] [Related]

  • 17. Combined irradiation-heat processing of canned foods. II. Raw ground beef inoculated with spores of Clostridium botulinum.
    KEMPE LL, GRAIKOSKI JT, BONVENTRE PF.
    Appl Microbiol; 1958 Jul; 6(4):261-3. PubMed ID: 13559976
    [No Abstract] [Full Text] [Related]

  • 18. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN, Naghski J, Custer CS, Russell RW.
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis.
    Sharma SK, Eblen BS, Bull RL, Burr DH, Whiting RC.
    Appl Environ Microbiol; 2005 Jul; 71(7):3935-41. PubMed ID: 16000807
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.