These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 29567834
1. The cohesin module is a major determinant of cellulosome mechanical stability. Galera-Prat A, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. J Biol Chem; 2018 May 11; 293(19):7139-7147. PubMed ID: 29567834 [Abstract] [Full Text] [Related]
2. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum. Barth A, Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC. Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):E11274-E11283. PubMed ID: 30429330 [Abstract] [Full Text] [Related]
3. Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes. Bule P, Cameron K, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Bayer EA, Najmudin S, Fontes CMGA, Alves VD. J Biol Chem; 2018 Mar 16; 293(11):4201-4212. PubMed ID: 29367338 [Abstract] [Full Text] [Related]
4. Impact of scaffoldin mechanostability on cellulosomal activity. Galera-Prat A, Vera AM, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. Biomater Sci; 2020 Jul 07; 8(13):3601-3610. PubMed ID: 32232253 [Abstract] [Full Text] [Related]
6. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM. Biochem J; 2009 Dec 10; 424(3):375-84. PubMed ID: 19758121 [Abstract] [Full Text] [Related]
7. A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome. Duarte M, Viegas A, Alves VD, Prates JAM, Ferreira LMA, Najmudin S, Cabrita EJ, Carvalho AL, Fontes CMGA, Bule P. J Biol Chem; 2021 Dec 10; 296():100552. PubMed ID: 33744293 [Abstract] [Full Text] [Related]
9. Combined Crystal Structure of a Type I Cohesin: MUTATION AND AFFINITY BINDING STUDIES REVEAL STRUCTURAL DETERMINANTS OF COHESIN-DOCKERIN SPECIFICITIES. Cameron K, Weinstein JY, Zhivin O, Bule P, Fleishman SJ, Alves VD, Gilbert HJ, Ferreira LM, Fontes CM, Bayer EA, Najmudin S. J Biol Chem; 2015 Jun 26; 290(26):16215-25. PubMed ID: 25934389 [Abstract] [Full Text] [Related]
10. A cellulosomal double-dockerin module from Clostridium thermocellum shows distinct structural and cohesin-binding features. Chen C, Yang H, Dong S, You C, Moraïs S, Bayer EA, Liu YJ, Xuan J, Cui Q, Mizrahi I, Feng Y. Protein Sci; 2024 Apr 26; 33(4):e4937. PubMed ID: 38501488 [Abstract] [Full Text] [Related]
11. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum. Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA. mBio; 2020 Mar 31; 11(2):. PubMed ID: 32234813 [Abstract] [Full Text] [Related]
12. Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. Brás JL, Alves VD, Carvalho AL, Najmudin S, Prates JA, Ferreira LM, Bolam DN, Romão MJ, Gilbert HJ, Fontes CM. J Biol Chem; 2012 Dec 28; 287(53):44394-405. PubMed ID: 23118225 [Abstract] [Full Text] [Related]
13. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome. Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N. Appl Environ Microbiol; 2015 Jul 28; 81(14):4756-66. PubMed ID: 25956772 [Abstract] [Full Text] [Related]
14. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Wieczorek AS, Martin VJ. Microb Cell Fact; 2010 Sep 14; 9():69. PubMed ID: 20840763 [Abstract] [Full Text] [Related]
15. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA. Methods Enzymol; 2012 Sep 14; 510():429-52. PubMed ID: 22608740 [Abstract] [Full Text] [Related]
16. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. Verdorfer T, Bernardi RC, Meinhold A, Ott W, Luthey-Schulten Z, Nash MA, Gaub HE. J Am Chem Soc; 2017 Dec 13; 139(49):17841-17852. PubMed ID: 29058444 [Abstract] [Full Text] [Related]
17. Investigating receptor-ligand systems of the cellulosome with AFM-based single-molecule force spectroscopy. Jobst MA, Schoeler C, Malinowska K, Nash MA. J Vis Exp; 2013 Dec 20; (82):e50950. PubMed ID: 24378772 [Abstract] [Full Text] [Related]
18. Diverse specificity of cellulosome attachment to the bacterial cell surface. Brás JL, Pinheiro BA, Cameron K, Cuskin F, Viegas A, Najmudin S, Bule P, Pires VM, Romão MJ, Bayer EA, Spencer HL, Smith S, Gilbert HJ, Alves VD, Carvalho AL, Fontes CM. Sci Rep; 2016 Dec 07; 6():38292. PubMed ID: 27924829 [Abstract] [Full Text] [Related]
19. Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants. Xu J, Smith JC. Protein Eng Des Sel; 2010 Oct 07; 23(10):759-68. PubMed ID: 20682763 [Abstract] [Full Text] [Related]
20. Ligand Binding Stabilizes Cellulosomal Cohesins as Revealed by AFM-based Single-Molecule Force Spectroscopy. Verdorfer T, Gaub HE. Sci Rep; 2018 Jun 25; 8(1):9634. PubMed ID: 29941985 [Abstract] [Full Text] [Related] Page: [Next] [New Search]