These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 29569823
1. Plasmonic Hotspots in Air: An Omnidirectional Three-Dimensional Platform for Stand-Off In-Air SERS Sensing of Airborne Species. Phan-Quang GC, Lee HK, Teng HW, Koh CSL, Yim BQ, Tan EKM, Tok WL, Phang IY, Ling XY. Angew Chem Int Ed Engl; 2018 May 14; 57(20):5792-5796. PubMed ID: 29569823 [Abstract] [Full Text] [Related]
2. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Phan-Quang GC, Han X, Koh CSL, Sim HYF, Lay CL, Leong SX, Lee YH, Pazos-Perez N, Alvarez-Puebla RA, Ling XY. Acc Chem Res; 2019 Jul 16; 52(7):1844-1854. PubMed ID: 31180637 [Abstract] [Full Text] [Related]
3. Tracking Airborne Molecules from Afar: Three-Dimensional Metal-Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. Phan-Quang GC, Yang N, Lee HK, Sim HYF, Koh CSL, Kao YC, Wong ZC, Tan EKM, Miao YE, Fan W, Liu T, Phang IY, Ling XY. ACS Nano; 2019 Oct 22; 13(10):12090-12099. PubMed ID: 31518107 [Abstract] [Full Text] [Related]
4. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch. Gupta P, Luan J, Wang Z, Cao S, Bae SH, Naik RR, Singamaneni S. ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):37939-37946. PubMed ID: 31525866 [Abstract] [Full Text] [Related]
5. Plasmonic Colloidosomes as Three-Dimensional SERS Platforms with Enhanced Surface Area for Multiphase Sub-Microliter Toxin Sensing. Phan-Quang GC, Lee HK, Phang IY, Ling XY. Angew Chem Int Ed Engl; 2015 Aug 10; 54(33):9691-5. PubMed ID: 26120021 [Abstract] [Full Text] [Related]
6. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss. Shen Y, Cheng X, Li G, Zhu Q, Chi Z, Wang J, Jin C. Nanoscale Horiz; 2016 Jul 20; 1(4):290-297. PubMed ID: 32260648 [Abstract] [Full Text] [Related]
7. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films. Tang L, Liu Y, Liu G, Chen Q, Li Y, Shi L, Liu Z, Liu X. Nanoscale Res Lett; 2019 Mar 13; 14(1):94. PubMed ID: 30868395 [Abstract] [Full Text] [Related]
9. Wearable SERS Sensor Based on Omnidirectional Plasmonic Nanovoids Array with Ultra-High Sensitivity and Stability. Zhu K, Yang K, Zhang Y, Yang Z, Qian Z, Li N, Li L, Jiang G, Wang T, Zong S, Wu L, Wang Z, Cui Y. Small; 2022 Aug 13; 18(32):e2201508. PubMed ID: 35843883 [Abstract] [Full Text] [Related]
10. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han X, Lay CL, Sim HYF, Kao YC, An Q, Ling XY. Chem Soc Rev; 2019 Feb 04; 48(3):731-756. PubMed ID: 30475351 [Abstract] [Full Text] [Related]
16. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Goh MS, Lee YH, Pedireddy S, Phang IY, Tjiu WW, Tan JM, Ling XY. Langmuir; 2012 Oct 09; 28(40):14441-9. PubMed ID: 22970778 [Abstract] [Full Text] [Related]