These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 29570740

  • 1. Identifying bedrest using 24-h waist or wrist accelerometry in adults.
    Tracy JD, Acra S, Chen KY, Buchowski MS.
    PLoS One; 2018; 13(3):e0194461. PubMed ID: 29570740
    [Abstract] [Full Text] [Related]

  • 2. Identifying bedrest using waist-worn triaxial accelerometers in preschool children.
    Tracy JD, Donnelly T, Sommer EC, Heerman WJ, Barkin SL, Buchowski MS.
    PLoS One; 2021; 16(1):e0246055. PubMed ID: 33507967
    [Abstract] [Full Text] [Related]

  • 3. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.
    Tracy DJ, Xu Z, Choi L, Acra S, Chen KY, Buchowski MS.
    PLoS One; 2014; 9(4):e92512. PubMed ID: 24727999
    [Abstract] [Full Text] [Related]

  • 4. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device.
    Cheung J, Leary EB, Lu H, Zeitzer JM, Mignot E.
    PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498
    [Abstract] [Full Text] [Related]

  • 5. Estimating sleep efficiency in 10- to- 13-year-olds using a waist-worn accelerometer.
    Borghese MM, Lin Y, Chaput JP, Janssen I.
    Sleep Health; 2018 Feb; 4(1):110-115. PubMed ID: 29332671
    [Abstract] [Full Text] [Related]

  • 6. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R, Höchsmann C, Infanger D, Hinrichs T, Schmidt-Trucksäss A.
    BMC Public Health; 2019 Feb 28; 19(1):244. PubMed ID: 30819148
    [Abstract] [Full Text] [Related]

  • 7. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
    Choi L, Ward SC, Schnelle JF, Buchowski MS.
    Med Sci Sports Exerc; 2012 Oct 28; 44(10):2009-16. PubMed ID: 22525772
    [Abstract] [Full Text] [Related]

  • 8. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors.
    Tudor-Locke C, Barreira TV, Schuna JM, Mire EF, Katzmarzyk PT.
    Appl Physiol Nutr Metab; 2014 Jan 28; 39(1):53-7. PubMed ID: 24383507
    [Abstract] [Full Text] [Related]

  • 9. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children.
    Clevenger KA, Pfeiffer KA, Mackintosh KA, McNarry MA, Brønd J, Arvidsson D, Montoye AHK.
    Physiol Meas; 2019 Sep 30; 40(9):095008. PubMed ID: 31518999
    [Abstract] [Full Text] [Related]

  • 10. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S.
    Physiol Meas; 2014 Nov 30; 35(11):2191-203. PubMed ID: 25340969
    [Abstract] [Full Text] [Related]

  • 11. The backwards comparability of wrist worn GENEActiv and waist worn ActiGraph accelerometer estimates of sedentary time in children.
    Boddy LM, Noonan RJ, Rowlands AV, Hurter L, Knowles ZR, Fairclough SJ.
    J Sci Med Sport; 2019 Jul 30; 22(7):814-820. PubMed ID: 30803818
    [Abstract] [Full Text] [Related]

  • 12. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography.
    Full KM, Kerr J, Grandner MA, Malhotra A, Moran K, Godoble S, Natarajan L, Soler X.
    Sleep Health; 2018 Apr 30; 4(2):209-216. PubMed ID: 29555136
    [Abstract] [Full Text] [Related]

  • 13. Validation of the Vivago Wrist-Worn accelerometer in the assessment of physical activity.
    Vanhelst J, Hurdiel R, Mikulovic J, Bui-Xuân G, Fardy P, Theunynck D, Béghin L.
    BMC Public Health; 2012 Aug 22; 12():690. PubMed ID: 22913286
    [Abstract] [Full Text] [Related]

  • 14. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions.
    Lozano-Garcia M, Doheny EP, Mann E, Morgan-Jones P, Drew C, Busse-Morris M, Lowery MM.
    IEEE Trans Neural Syst Rehabil Eng; 2024 Aug 22; 32():2239-2249. PubMed ID: 38819972
    [Abstract] [Full Text] [Related]

  • 15. Comparison Between Wrist-Worn and Waist-Worn Accelerometry.
    Loprinzi PD, Smith B.
    J Phys Act Health; 2017 Jul 22; 14(7):539-545. PubMed ID: 28290761
    [Abstract] [Full Text] [Related]

  • 16. Using accelerometry to classify physical activity intensity in older adults: What is the optimal wear-site?
    Duncan MJ, Rowlands A, Lawson C, Leddington Wright S, Hill M, Morris M, Eyre E, Tallis J.
    Eur J Sport Sci; 2020 Sep 22; 20(8):1131-1139. PubMed ID: 31726952
    [Abstract] [Full Text] [Related]

  • 17. Comparison of step outputs for waist and wrist accelerometer attachment sites.
    Tudor-Locke C, Barreira TV, Schuna JM.
    Med Sci Sports Exerc; 2015 Apr 22; 47(4):839-42. PubMed ID: 25121517
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Comparison of stepping-based metrics from ActiGraph accelerometers worn concurrently on the non-dominant wrist and waist among young adults.
    Buchan DS.
    J Sports Sci; 2024 Sep 22; 42(17):1664-1672. PubMed ID: 39369332
    [Abstract] [Full Text] [Related]

  • 20. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands.
    Plekhanova T, Rowlands AV, Davies MJ, Hall AP, Yates T, Edwardson CL.
    J Sleep Res; 2023 Jun 22; 32(3):e13760. PubMed ID: 36317222
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.