These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 29571709

  • 21. A seed expansion-based method to identify essential proteins by integrating protein-protein interaction sub-networks and multiple biological characteristics.
    Zhao H, Liu G, Cao X.
    BMC Bioinformatics; 2023 Nov 30; 24(1):452. PubMed ID: 38036960
    [Abstract] [Full Text] [Related]

  • 22. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density.
    Lei X, Yang X.
    PLoS One; 2018 Nov 30; 13(6):e0198998. PubMed ID: 29894517
    [Abstract] [Full Text] [Related]

  • 23. A protein network refinement method based on module discovery and biological information.
    Pan L, Wang H, Yang B, Li W.
    BMC Bioinformatics; 2024 Apr 20; 25(1):157. PubMed ID: 38643108
    [Abstract] [Full Text] [Related]

  • 24. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G, Li M, Wang J, Li Y, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Apr 20; 17(4):1451-1458. PubMed ID: 30596582
    [Abstract] [Full Text] [Related]

  • 25. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L, Chan KC.
    BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799
    [Abstract] [Full Text] [Related]

  • 26. Identification of Essential Proteins Based on Improved HITS Algorithm.
    Lei X, Wang S, Wu F.
    Genes (Basel); 2019 Feb 25; 10(2):. PubMed ID: 30823614
    [Abstract] [Full Text] [Related]

  • 27. A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity.
    Zhang W, Xu J, Li X, Zou X.
    IEEE Trans Nanobioscience; 2016 Dec 25; 15(8):939-945. PubMed ID: 27834650
    [Abstract] [Full Text] [Related]

  • 28. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 29. Predicting Essential Proteins Based on Integration of Local Fuzzy Fractal Dimension and Subcellular Location Information.
    Shen L, Zhang J, Wang F, Liu K.
    Genes (Basel); 2022 Jan 19; 13(2):. PubMed ID: 35205217
    [Abstract] [Full Text] [Related]

  • 30. A novel method to predict essential proteins based on tensor and HITS algorithm.
    Zhang Z, Luo Y, Hu S, Li X, Wang L, Zhao B.
    Hum Genomics; 2020 Apr 06; 14(1):14. PubMed ID: 32252824
    [Abstract] [Full Text] [Related]

  • 31. Prediction of essential proteins based on overlapping essential modules.
    Zhao B, Wang J, Li M, Wu FX, Pan Y.
    IEEE Trans Nanobioscience; 2014 Dec 06; 13(4):415-24. PubMed ID: 25122840
    [Abstract] [Full Text] [Related]

  • 32. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X, Wang J, Zhao B, Wu FX, Pan Y.
    Hum Genomics; 2016 Jul 25; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [Abstract] [Full Text] [Related]

  • 33. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N, Yoon BJ.
    BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):351. PubMed ID: 27766944
    [Abstract] [Full Text] [Related]

  • 34. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.
    Jiang Y, Wang Y, Pang W, Chen L, Sun H, Liang Y, Blanzieri E.
    Methods; 2015 Jul 15; 83():51-62. PubMed ID: 25892709
    [Abstract] [Full Text] [Related]

  • 35. Identifying essential proteins from protein-protein interaction networks based on influence maximization.
    Xu W, Dong Y, Guan J, Zhou S.
    BMC Bioinformatics; 2022 Aug 16; 23(Suppl 8):339. PubMed ID: 35974329
    [Abstract] [Full Text] [Related]

  • 36. A new computational strategy for identifying essential proteins based on network topological properties and biological information.
    Qin C, Sun Y, Dong Y.
    PLoS One; 2017 Aug 16; 12(7):e0182031. PubMed ID: 28753682
    [Abstract] [Full Text] [Related]

  • 37. Decision tree classifier based on topological characteristics of subgraph for the mining of protein complexes from large scale PPI networks.
    Sahoo TR, Patra S, Vipsita S.
    Comput Biol Chem; 2023 Oct 16; 106():107935. PubMed ID: 37536230
    [Abstract] [Full Text] [Related]

  • 38. Exploiting locational and topological overlap model to identify modules in protein interaction networks.
    Cheng L, Liu P, Wang D, Leung KS.
    BMC Bioinformatics; 2019 Jan 14; 20(1):23. PubMed ID: 30642247
    [Abstract] [Full Text] [Related]

  • 39. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions.
    Li M, Zheng R, Zhang H, Wang J, Pan Y.
    Methods; 2014 Jun 01; 67(3):325-33. PubMed ID: 24565748
    [Abstract] [Full Text] [Related]

  • 40. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information.
    Zeng M, Li M, Fei Z, Wu FX, Li Y, Pan Y, Wang J.
    IEEE/ACM Trans Comput Biol Bioinform; 2021 Jun 01; 18(1):296-305. PubMed ID: 30736002
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.