These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. Larik FA, Saeed A, Channar PA, Muqadar U, Abbas Q, Hassan M, Seo SY, Bolte M. Eur J Med Chem; 2017 Dec 01; 141():273-281. PubMed ID: 29040952 [Abstract] [Full Text] [Related]
27. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. Bukhari SN, Jantan I, Unsal Tan O, Sher M, Naeem-Ul-Hassan M, Qin HL. J Agric Food Chem; 2014 Jun 18; 62(24):5538-47. PubMed ID: 24901506 [Abstract] [Full Text] [Related]
29. Coumaric acid derivatives as tyrosinase inhibitors: Efficacy studies through in silico, in vitro and ex vivo approaches. Varela MT, Ferrarini M, Mercaldi VG, Sufi BDS, Padovani G, Nazato LIS, Fernandes JPS. Bioorg Chem; 2020 Oct 18; 103():104108. PubMed ID: 32750608 [Abstract] [Full Text] [Related]
30. Isobenzofuran-1(3H)-ones as new tyrosinase inhibitors: Biological activity and interaction studies by molecular docking and NMR. Pires DAT, Guedes IA, Pereira WL, Teixeira RR, Dardenne LE, Nascimento CJ, Figueroa-Villar JD. Biochim Biophys Acta Proteins Proteom; 2021 Feb 18; 1869(2):140580. PubMed ID: 33278593 [Abstract] [Full Text] [Related]
32. Bond-based 2D quadratic fingerprints in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation. Casañola-Martin GM, Marrero-Ponce Y, Khan MT, Khan SB, Torrens F, Pérez-Jiménez F, Rescigno A, Abad C. Chem Biol Drug Des; 2010 Dec 18; 76(6):538-45. PubMed ID: 20964806 [Abstract] [Full Text] [Related]
33. Predictive chemometric modeling of DPPH free radical-scavenging activity of azole derivatives using 2D- and 3D-quantitative structure-activity relationship tools. Mitra I, Saha A, Roy K. Future Med Chem; 2013 Mar 18; 5(3):261-80. PubMed ID: 23464517 [Abstract] [Full Text] [Related]
37. Vanilloid derivatives as tyrosinase inhibitors driven by virtual screening-based QSAR models. Rescigno A, Casañola-Martin GM, Sanjust E, Zucca P, Marrero-Ponce Y. Drug Test Anal; 2011 Mar 18; 3(3):176-81. PubMed ID: 21125547 [Abstract] [Full Text] [Related]
38. Tyrosinase inhibitors as potential antibacterial agents. Yuan Y, Jin W, Nazir Y, Fercher C, Blaskovich MAT, Cooper MA, Barnard RT, Ziora ZM. Eur J Med Chem; 2020 Feb 01; 187():111892. PubMed ID: 31810785 [Abstract] [Full Text] [Related]
39. Searching for indole derivatives as potential mushroom tyrosinase inhibitors. Ferro S, Certo G, De Luca L, Germanò MP, Rapisarda A, Gitto R. J Enzyme Inhib Med Chem; 2016 Feb 01; 31(3):398-403. PubMed ID: 25826148 [Abstract] [Full Text] [Related]
40. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Pintus F, Matos MJ, Vilar S, Hripcsak G, Varela C, Uriarte E, Santana L, Borges F, Medda R, Di Petrillo A, Era B, Fais A. Bioorg Med Chem; 2017 Mar 01; 25(5):1687-1695. PubMed ID: 28189394 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]