These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


351 related items for PubMed ID: 29589812

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Spatial zones for muscle coactivation and the control of postural stability.
    Levin MF, Dimov M.
    Brain Res; 1997 May 16; 757(1):43-59. PubMed ID: 9200498
    [Abstract] [Full Text] [Related]

  • 24. Neural control of shortening and lengthening contractions: influence of task constraints.
    Duchateau J, Enoka RM.
    J Physiol; 2008 Dec 15; 586(24):5853-64. PubMed ID: 18955381
    [Abstract] [Full Text] [Related]

  • 25. Exploring novel objective functions for simulating muscle coactivation in the neck.
    Mortensen J, Trkov M, Merryweather A.
    J Biomech; 2018 Apr 11; 71():127-134. PubMed ID: 29452757
    [Abstract] [Full Text] [Related]

  • 26. Muscle hysteresis and movement control: a theoretical study.
    Kostyukov AI.
    Neuroscience; 1998 Mar 11; 83(1):303-20. PubMed ID: 9466419
    [Abstract] [Full Text] [Related]

  • 27. Development and testing of a moment-based coactivation index to assess complex dynamic tasks for the lumbar spine.
    Le P, Aurand A, Dufour JS, Knapik GG, Best TM, Khan SN, Mendel E, Marras WS.
    Clin Biomech (Bristol); 2017 Jul 11; 46():23-32. PubMed ID: 28500909
    [Abstract] [Full Text] [Related]

  • 28. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N, Li Y, Sun Y, Yang FS.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar 11; 13(1):60-71. PubMed ID: 15813407
    [Abstract] [Full Text] [Related]

  • 29. The neural control of coactivation during fatiguing contractions revisited.
    Duchateau J, Baudry S.
    J Electromyogr Kinesiol; 2014 Dec 11; 24(6):780-8. PubMed ID: 25225169
    [Abstract] [Full Text] [Related]

  • 30. Spinal-like regulator facilitates control of a two-degree-of-freedom wrist.
    Raphael G, Tsianos GA, Loeb GE.
    J Neurosci; 2010 Jul 14; 30(28):9431-44. PubMed ID: 20631172
    [Abstract] [Full Text] [Related]

  • 31. Global lower limb muscle coactivation during walking at different speeds: Relationship between spatio-temporal, kinematic, kinetic, and energetic parameters.
    Varrecchia T, Rinaldi M, Serrao M, Draicchio F, Conte C, Conforto S, Schmid M, Ranavolo A.
    J Electromyogr Kinesiol; 2018 Dec 14; 43():148-157. PubMed ID: 30292137
    [Abstract] [Full Text] [Related]

  • 32. Effect of vibration on antagonist muscle coactivation during progressive fatigue in humans.
    Rothmuller C, Cafarelli E.
    J Physiol; 1995 Jun 15; 485 ( Pt 3)(Pt 3):857-64. PubMed ID: 7562623
    [Abstract] [Full Text] [Related]

  • 33. Effects of contraction history on control and stability in explosive actions.
    Ettema GJ.
    J Electromyogr Kinesiol; 2002 Dec 15; 12(6):455-61. PubMed ID: 12435542
    [Abstract] [Full Text] [Related]

  • 34. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.
    Rinaldi M, Ranavolo A, Conforto S, Martino G, Draicchio F, Conte C, Varrecchia T, Bini F, Casali C, Pierelli F, Serrao M.
    Clin Biomech (Bristol); 2017 Oct 15; 48():63-72. PubMed ID: 28779695
    [Abstract] [Full Text] [Related]

  • 35. Partition of voluntary command to antagonist muscles during cyclic flexion-extension of the hand.
    Esposti R, Cavallari P, Baldissera F.
    Exp Brain Res; 2005 May 15; 162(4):436-48. PubMed ID: 15690157
    [Abstract] [Full Text] [Related]

  • 36. Physiological basis of limb-impedance modulation during free and constrained movements.
    Damm L, McIntyre J.
    J Neurophysiol; 2008 Nov 15; 100(5):2577-88. PubMed ID: 18715898
    [Abstract] [Full Text] [Related]

  • 37. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K, Roy A.
    J Biomech Eng; 2009 Jan 15; 131(1):011002. PubMed ID: 19045918
    [Abstract] [Full Text] [Related]

  • 38. Voluntary ankle flexor activity and adaptive coactivation gain is decreased by spasticity during subacute spinal cord injury.
    Gómez-Soriano J, Castellote JM, Pérez-Rizo E, Esclarin A, Taylor JS.
    Exp Neurol; 2010 Aug 15; 224(2):507-16. PubMed ID: 20580713
    [Abstract] [Full Text] [Related]

  • 39. The effect of muscle pain on elbow flexion and coactivation tasks.
    Ervilha UF, Arendt-Nielsen L, Duarte M, Graven-Nielsen T.
    Exp Brain Res; 2004 May 15; 156(2):174-82. PubMed ID: 14747884
    [Abstract] [Full Text] [Related]

  • 40. Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence.
    Levin O, Wenderoth N, Steyvers M, Swinnen SP.
    Exp Brain Res; 2003 Jan 15; 148(1):62-76. PubMed ID: 12478397
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.