These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
349 related items for PubMed ID: 29593406
1. Curcuminoid-loaded poly(methyl methacrylate) nanoparticles for cancer therapy. Sahu A, Solanki P, Mitra S. Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):101-105. PubMed ID: 29593406 [Abstract] [Full Text] [Related]
2. Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Feng R, Song Z, Zhai G. Int J Nanomedicine; 2012; 7():4089-98. PubMed ID: 22888245 [Abstract] [Full Text] [Related]
3. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration. Huang Y, Hu L, Huang S, Xu W, Wan J, Wang D, Zheng G, Xia Z. Int J Nanomedicine; 2018; 13():8309-8323. PubMed ID: 30584302 [Abstract] [Full Text] [Related]
4. Preparation of poly-l-lysine-based nanoparticles with pH-sensitive release of curcumin for targeted imaging and therapy of liver cancer in vitro and in vivo. Yang DH, Kim HJ, Park K, Kim JK, Chun HJ. Drug Deliv; 2018 Nov; 25(1):950-960. PubMed ID: 29658319 [Abstract] [Full Text] [Related]
5. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. Mendes AN, Filgueiras LA, Siqueira MRP, Barbosa GM, Holandino C, de Lima Moreira D, Pinto JC, Nele M. Int J Nanomedicine; 2017 Nov; 12():8363-8373. PubMed ID: 29200848 [Abstract] [Full Text] [Related]
6. Increased in vitro leishmanicidal activity of octyl gallate loaded poly(methyl methacrylate) nanoparticles. Feuser PE, Tonini ML, Jacques AV, Santos da Silva MC, Steindel M, Sayer C, Hermes de Araújo PH. Pharm Dev Technol; 2019 Jun; 24(5):593-599. PubMed ID: 30457422 [Abstract] [Full Text] [Related]
7. Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F. Nanomedicine; 2010 Oct; 6(5):689-97. PubMed ID: 20172052 [Abstract] [Full Text] [Related]
8. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, Kim H, Jon S, Chen X, Lee KC. Int J Pharm; 2011 Jan 17; 403(1-2):285-91. PubMed ID: 21035530 [Abstract] [Full Text] [Related]
9. Multimeric System of RGD-Grafted PMMA-Nanoparticles as a Targeted Drug- Delivery System for Paclitaxel. Gibbens-Bandala BV, Ocampo-García BE, Ferro-Flores G, Morales-Avila E, Ancira-Cortez A, Jaimes-Aguirre L. Curr Pharm Des; 2017 Jan 17; 23(23):3415-3422. PubMed ID: 28403791 [Abstract] [Full Text] [Related]
11. Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology. Wu W, Wu J, Fu Q, Jin C, Guo F, Yan Q, Yang Q, Wu D, Yang Y, Yang G. Int J Nanomedicine; 2019 Jan 17; 14():4683-4695. PubMed ID: 31308653 [Abstract] [Full Text] [Related]
12. Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells. Kumar SS, Mahesh A, Mahadevan S, Mandal AB. Biochim Biophys Acta; 2014 Jun 17; 1840(6):1913-22. PubMed ID: 24440669 [Abstract] [Full Text] [Related]
13. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. Sun L, Liu Z, Wang L, Cun D, Tong HHY, Yan R, Chen X, Wang R, Zheng Y. J Control Release; 2017 May 28; 254():44-54. PubMed ID: 28344018 [Abstract] [Full Text] [Related]
14. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. Lee WH, Loo CY, Rohanizadeh R. Mater Sci Eng C Mater Biol Appl; 2019 Jun 28; 99():929-939. PubMed ID: 30889767 [Abstract] [Full Text] [Related]
15. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J. Colloids Surf B Biointerfaces; 2011 Oct 15; 87(2):454-63. PubMed ID: 21719259 [Abstract] [Full Text] [Related]
16. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Liu J, Zeng Y, Shi S, Xu L, Zhang H, Pathak JL, Pan Y. Int J Nanomedicine; 2017 Oct 15; 12():3561-3575. PubMed ID: 28507436 [Abstract] [Full Text] [Related]
17. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier. Ma Q, Li B, Yu Y, Zhang Y, Wu Y, Ren W, Zheng Y, He J, Xie Y, Song X, He G. Int J Pharm; 2013 Mar 10; 445(1-2):88-92. PubMed ID: 23376505 [Abstract] [Full Text] [Related]
18. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy. Alemrayat B, Elhissi A, Younes HM. Pharm Dev Technol; 2019 Feb 10; 24(2):235-242. PubMed ID: 29561210 [Abstract] [Full Text] [Related]
19. Graft copolymer nanoparticles with pH and reduction dual-induced disassemblable property for enhanced intracellular curcumin release. Zhao J, Liu J, Xu S, Zhou J, Han S, Deng L, Zhang J, Liu J, Meng A, Dong A. ACS Appl Mater Interfaces; 2013 Dec 26; 5(24):13216-26. PubMed ID: 24313273 [Abstract] [Full Text] [Related]
20. Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid--in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Kumar SS, Surianarayanan M, Vijayaraghavan R, Mandal AB, MacFarlane DR. Eur J Pharm Sci; 2014 Jan 23; 51():34-44. PubMed ID: 24012589 [Abstract] [Full Text] [Related] Page: [Next] [New Search]