These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


523 related items for PubMed ID: 29598818

  • 1. Signal peptides for recombinant protein secretion in bacterial expression systems.
    Freudl R.
    Microb Cell Fact; 2018 Mar 29; 17(1):52. PubMed ID: 29598818
    [Abstract] [Full Text] [Related]

  • 2. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q, Palmer T.
    mBio; 2017 Aug 01; 8(4):. PubMed ID: 28765221
    [Abstract] [Full Text] [Related]

  • 3. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria.
    Meissner D, Vollstedt A, van Dijl JM, Freudl R.
    Appl Microbiol Biotechnol; 2007 Sep 01; 76(3):633-42. PubMed ID: 17453196
    [Abstract] [Full Text] [Related]

  • 4. Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins.
    Freudl R.
    J Biotechnol; 2017 Sep 20; 258():101-109. PubMed ID: 28238807
    [Abstract] [Full Text] [Related]

  • 5. Novel GFP expression using a short N-terminal polypeptide through the defined twin-arginine translocation (Tat) pathway.
    Lee SJ, Han YH, Kim YO, Nam BH, Kong HJ.
    Mol Cells; 2011 Oct 20; 32(4):349-58. PubMed ID: 22038594
    [Abstract] [Full Text] [Related]

  • 6. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery.
    Taw MN, Li M, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP.
    ACS Synth Biol; 2021 Nov 19; 10(11):2947-2958. PubMed ID: 34757717
    [Abstract] [Full Text] [Related]

  • 7. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S, de Gier JW, Nielsen H, von Heijne G.
    EMBO J; 1999 Jun 01; 18(11):2982-90. PubMed ID: 10357811
    [Abstract] [Full Text] [Related]

  • 8. Leaving home ain't easy: protein export systems in Gram-positive bacteria.
    Freudl R.
    Res Microbiol; 2013 Jun 01; 164(6):664-74. PubMed ID: 23541477
    [Abstract] [Full Text] [Related]

  • 9. Denovo designing: a novel signal peptide for tat translocation pathway to transport activin A to the periplasmic space of E. coli.
    Zandsalimi F, Hajihassan Z, Hamidi R.
    Biotechnol Lett; 2020 Jan 01; 42(1):45-55. PubMed ID: 31679097
    [Abstract] [Full Text] [Related]

  • 10. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli.
    Fisher AC, Kim JY, Perez-Rodriguez R, Tullman-Ercek D, Fish WR, Henderson LA, DeLisa MP.
    Microb Biotechnol; 2008 Sep 01; 1(5):403-15. PubMed ID: 21261860
    [Abstract] [Full Text] [Related]

  • 11. Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications.
    Shruthi H, Anand P, Murugan V, Sankaran K.
    Mol Biosyst; 2010 Jun 01; 6(6):999-1007. PubMed ID: 20485744
    [Abstract] [Full Text] [Related]

  • 12. Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion.
    van Dijl JM, Braun PG, Robinson C, Quax WJ, Antelmann H, Hecker M, Müller J, Tjalsma H, Bron S, Jongbloed JD.
    J Biotechnol; 2002 Sep 25; 98(2-3):243-54. PubMed ID: 12141990
    [Abstract] [Full Text] [Related]

  • 13. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation.
    Blaudeck N, Sprenger GA, Freudl R, Wiegert T.
    J Bacteriol; 2001 Jan 25; 183(2):604-10. PubMed ID: 11133954
    [Abstract] [Full Text] [Related]

  • 14. Inner Membrane Translocases and Insertases.
    De Geyter J, Smets D, Karamanou S, Economou A.
    Subcell Biochem; 2019 Jan 25; 92():337-366. PubMed ID: 31214992
    [Abstract] [Full Text] [Related]

  • 15. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli.
    Albiniak AM, Matos CF, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C.
    FEBS J; 2013 Aug 25; 280(16):3810-21. PubMed ID: 23745597
    [Abstract] [Full Text] [Related]

  • 16. Increase in xylanase production by Streptomyces lividans through simultaneous use of the Sec- and Tat-dependent protein export systems.
    Gauthier C, Li H, Morosoli R.
    Appl Environ Microbiol; 2005 Jun 25; 71(6):3085-92. PubMed ID: 15933005
    [Abstract] [Full Text] [Related]

  • 17. Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis.
    Yang C, Song C, Freudl R, Mulchandani A, Qiao C.
    Environ Sci Technol; 2010 Oct 01; 44(19):7607-12. PubMed ID: 20812717
    [Abstract] [Full Text] [Related]

  • 18. Secretory and extracellular production of recombinant proteins using Escherichia coli.
    Choi JH, Lee SY.
    Appl Microbiol Biotechnol; 2004 Jun 01; 64(5):625-35. PubMed ID: 14966662
    [Abstract] [Full Text] [Related]

  • 19. The Tat system of Gram-positive bacteria.
    Goosens VJ, Monteferrante CG, van Dijl JM.
    Biochim Biophys Acta; 2014 Aug 01; 1843(8):1698-706. PubMed ID: 24140208
    [Abstract] [Full Text] [Related]

  • 20. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli.
    Matos CF, Branston SD, Albiniak A, Dhanoya A, Freedman RB, Keshavarz-Moore E, Robinson C.
    Biotechnol Bioeng; 2012 Oct 01; 109(10):2533-42. PubMed ID: 22539025
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.