These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 29613954

  • 1. Left ventricular compressions improve return of spontaneous circulation and hemodynamics in a swine model of traumatic cardiopulmonary arrest.
    Anderson KL, Fiala KC, Castaneda MG, Boudreau SM, Araña AA, Bebarta VS.
    J Trauma Acute Care Surg; 2018 Aug; 85(2):303-310. PubMed ID: 29613954
    [Abstract] [Full Text] [Related]

  • 2. Effects of Left Ventricular Versus Traditional Chest Compressions in a Traumatic Pulseless Electrical Activity Model.
    Anderson KL, Evans JC, Castaneda MG, Boudreau SM, Maddry JK, Morgan JD.
    Mil Med; 2022 Mar 28; 187(3-4):351-359. PubMed ID: 34143215
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The Effect of Chest Compression Location and Occlusion of the Aorta in a Traumatic Arrest Model.
    Anderson KL, Morgan JD, Castaneda MG, Boudreau SM, Araña AA, Kohn MA, Bebarta VS.
    J Surg Res; 2020 Oct 28; 254():64-74. PubMed ID: 32417498
    [Abstract] [Full Text] [Related]

  • 5. The Effect of Chest Compression Location and Aortic Perfusion in a Traumatic Arrest Model.
    Barringer BJ, Castaneda MG, Rall J, Maddry JK, Anderson KL.
    J Surg Res; 2021 Feb 28; 258():88-99. PubMed ID: 33002666
    [Abstract] [Full Text] [Related]

  • 6. Cold aortic flush and chest compressions enable good neurologic outcome after 15 mins of ventricular fibrillation in cardiac arrest in pigs.
    Janata A, Weihs W, Schratter A, Bayegan K, Holzer M, Frossard M, Sipos W, Springler G, Schmidt P, Sterz F, Losert UM, Laggner AN, Kochanek PM, Behringer W.
    Crit Care Med; 2010 Aug 28; 38(8):1637-43. PubMed ID: 20543671
    [Abstract] [Full Text] [Related]

  • 7. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA, Sanders AB, Kern KB, Hilwig RW, Heidenreich JW, Porter ME, Ewy GA.
    Circulation; 2001 Nov 13; 104(20):2465-70. PubMed ID: 11705826
    [Abstract] [Full Text] [Related]

  • 8. Effect of the Abdominal Aortic and Junctional Tourniquet on chest compressions in a swine model of ventricular fibrillation.
    Hewitt CW, Pombo MA, Blough PE, Castaneda MG, Percival TJ, Rall JM.
    Am J Emerg Med; 2021 Jul 13; 45():297-302. PubMed ID: 33046311
    [Abstract] [Full Text] [Related]

  • 9. Doubling survival and improving clinical outcomes using a left ventricular assist device instead of chest compressions for resuscitation after prolonged cardiac arrest: a large animal study.
    Derwall M, Brücken A, Bleilevens C, Ebeling A, Föhr P, Rossaint R, Kern KB, Nix C, Fries M.
    Crit Care; 2015 Mar 26; 19(1):123. PubMed ID: 25886909
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Influence of Chest Compressions on Circulation during the Peri-Cardiac Arrest Period in Porcine Models.
    Xu J, Li C, Li Y, Walline J, Zheng L, Fu Y, Yao D, Zhu H, Liu X, Chai Y, Wang Z, Yu X.
    PLoS One; 2016 Mar 26; 11(5):e0155212. PubMed ID: 27168071
    [Abstract] [Full Text] [Related]

  • 12. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons.
    Adams JA, Bassuk JA, Arias J, Wu H, Jorapur V, Lamas GA, Kurlansky P.
    Resuscitation; 2008 Apr 26; 77(1):132-8. PubMed ID: 18164796
    [Abstract] [Full Text] [Related]

  • 13. High central venous pressure amplitude predicts successful defibrillation in a porcine model of cardiac arrest.
    Balzer C, Eagle SS, Yannopoulos D, Aufderheide TP, Riess ML.
    Resuscitation; 2023 Apr 26; 185():109716. PubMed ID: 36736947
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A, Pantazopoulos I, Giokas G, Chalkias A, Mavrovounis G, Papalois A, Douvanas A, Xanthos T, Iacovidou N.
    Am J Emerg Med; 2021 Oct 26; 48():60-66. PubMed ID: 33839633
    [Abstract] [Full Text] [Related]

  • 16. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE, Reyes M, Santos PT, Heitmiller SE, Kulikowicz E, Kudchadkar SR, Lee JK, Hunt EA, Koehler RC, Shaffner DH.
    J Am Heart Assoc; 2018 Oct 02; 7(19):e009728. PubMed ID: 30371318
    [Abstract] [Full Text] [Related]

  • 17. Relationship Between Left Ventricle Position and Haemodynamic Parameters During Cardiopulmonary Resuscitation in a Pig Model.
    Jung YH, Jeung KW, Lee DH, Jeong YW, Lee SM, Lee BK, Jeong IS, Lee SK, Choi J.
    Heart Lung Circ; 2018 Dec 02; 27(12):1489-1497. PubMed ID: 29056259
    [Abstract] [Full Text] [Related]

  • 18. Oxygen delivery and return of spontaneous circulation with ventilation:compression ratio 2:30 versus chest compressions only CPR in pigs.
    Dorph E, Wik L, Strømme TA, Eriksen M, Steen PA.
    Resuscitation; 2004 Mar 02; 60(3):309-18. PubMed ID: 15050764
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.