These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


284 related items for PubMed ID: 29625087

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae.
    Goss R, Ann Pinto E, Wilhelm C, Richter M.
    J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213
    [Abstract] [Full Text] [Related]

  • 4. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
    Müller-Moulé P, Conklin PL, Niyogi KK.
    Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252
    [Abstract] [Full Text] [Related]

  • 5. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.
    Chen Z, Gallie DR.
    Plant Physiol Biochem; 2012 Sep; 58():66-82. PubMed ID: 22771437
    [Abstract] [Full Text] [Related]

  • 6. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.
    Nowicka B, Strzalka W, Strzalka K.
    J Plant Physiol; 2009 Jul 01; 166(10):1045-56. PubMed ID: 19278749
    [Abstract] [Full Text] [Related]

  • 7. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM, Mohanty N, Yamamoto HY.
    FEBS Lett; 1994 Aug 22; 350(2-3):271-4. PubMed ID: 8070578
    [Abstract] [Full Text] [Related]

  • 8. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology.
    Lacour T, Babin M, Lavaud J.
    J Phycol; 2020 Apr 22; 56(2):245-263. PubMed ID: 31674660
    [Abstract] [Full Text] [Related]

  • 9. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V, Ruban AV.
    Biochim Biophys Acta Bioenerg; 2017 Mar 22; 1858(3):218-230. PubMed ID: 27989819
    [Abstract] [Full Text] [Related]

  • 10. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.
    Niyogi KK, Grossman AR, Björkman O.
    Plant Cell; 1998 Jul 22; 10(7):1121-34. PubMed ID: 9668132
    [Abstract] [Full Text] [Related]

  • 11. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis.
    Da Q, Sun T, Wang M, Jin H, Li M, Feng D, Wang J, Wang HB, Liu B.
    Plant Cell Rep; 2018 Feb 22; 37(2):279-291. PubMed ID: 29080907
    [Abstract] [Full Text] [Related]

  • 12. The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Johnson MP, Davison PA, Ruban AV, Horton P.
    FEBS Lett; 2008 Jan 23; 582(2):262-6. PubMed ID: 18083127
    [Abstract] [Full Text] [Related]

  • 13. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation.
    Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, Wilhelm C, Goss R.
    J Plant Physiol; 2015 Jan 01; 172():92-103. PubMed ID: 25240793
    [Abstract] [Full Text] [Related]

  • 14. The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical Quenching of Excitation Energy.
    Kress E, Jahns P.
    Front Plant Sci; 2017 Jan 01; 8():2094. PubMed ID: 29276525
    [Abstract] [Full Text] [Related]

  • 15. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.
    Roach T, Miller R, Aigner S, Kranner I.
    Ann Bot; 2015 Sep 01; 116(4):519-27. PubMed ID: 25878139
    [Abstract] [Full Text] [Related]

  • 16. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia.
    Kaňa R, Kotabová E, Kopečná J, Trsková E, Belgio E, Sobotka R, Ruban AV.
    FEBS Lett; 2016 Apr 01; 590(8):1076-85. PubMed ID: 26988983
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle.
    Goss R, Lepetit B, Wilhelm C.
    J Plant Physiol; 2006 Mar 01; 163(5):585-90. PubMed ID: 16473664
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.