These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Acylation of the Bordetella pertussis CyaA-hemolysin: Functional implications for efficient membrane insertion and pore formation. Meetum K, Imtong C, Katzenmeier G, Angsuthanasombat C. Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):312-318. PubMed ID: 27993565 [Abstract] [Full Text] [Related]
3. Preferential modification of CyaA-hemolysin by CyaC-acyltransferase through the catalytic Ser30-His33 dyad in esterolysis of palmitoyl-donor substrate devoid of acyl carrier proteins. Yentongchai M, Thamwiriyasati N, Imtong C, Li HC, Angsuthanasombat C. Arch Biochem Biophys; 2020 Nov 15; 694():108615. PubMed ID: 33011179 [Abstract] [Full Text] [Related]
5. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening. Kurehong C, Kanchanawarin C, Powthongchin B, Prangkio P, Katzenmeier G, Angsuthanasombat C. Toxins (Basel); 2017 Mar 16; 9(3):. PubMed ID: 28300777 [Abstract] [Full Text] [Related]
6. Contributions of the Hydrophobic Helix 2 of the Bordetella pertussis CyaA-hemolysin to Membrane Permeabilization. Prangkio P, Juntapremjit S, Koehler M, Hinterdorfer P, Angsuthanasombat C. Protein Pept Lett; 2018 Mar 16; 25(3):236-243. PubMed ID: 29205108 [Abstract] [Full Text] [Related]
7. Isolated CyaA-RTX subdomain from Bordetella pertussis: Structural and functional implications for its interaction with target erythrocyte membranes. Pandit RA, Meetum K, Suvarnapunya K, Katzenmeier G, Chaicumpa W, Angsuthanasombat C. Biochem Biophys Res Commun; 2015 Oct 09; 466(1):76-81. PubMed ID: 26325465 [Abstract] [Full Text] [Related]
8. Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment. Powthongchin B, Angsuthanasombat C. Arch Microbiol; 2009 Jan 09; 191(1):1-9. PubMed ID: 18712361 [Abstract] [Full Text] [Related]
9. Structural Characterization of Humanized Nanobodies with Neutralizing Activity against the Bordetella pertussis CyaA-Hemolysin: Implications for a Potential Epitope of Toxin-Protective Antigen. Malik AA, Imtong C, Sookrung N, Katzenmeier G, Chaicumpa W, Angsuthanasombat C. Toxins (Basel); 2016 Apr 01; 8(4):99. PubMed ID: 27043627 [Abstract] [Full Text] [Related]
10. Esterase activity of Bordetella pertussis CyaC-acyltransferase against synthetic substrates: implications for catalytic mechanism in vivo. Thamwiriyasati N, Powthongchin B, Kittiworakarn J, Katzenmeier G, Angsuthanasombat C. FEMS Microbiol Lett; 2010 Mar 01; 304(2):183-90. PubMed ID: 20132307 [Abstract] [Full Text] [Related]
11. Bordetella pertussis adenylate cyclase toxin: proCyaA and CyaC proteins synthesised separately in Escherichia coli produce active toxin in vitro. Westrop GD, Hormozi EK, Da Costa NA, Parton R, Coote JG. Gene; 1996 Nov 21; 180(1-2):91-9. PubMed ID: 8973351 [Abstract] [Full Text] [Related]
12. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. O'Brien DP, Cannella SE, Voegele A, Raoux-Barbot D, Davi M, Douché T, Matondo M, Brier S, Ladant D, Chenal A. FASEB J; 2019 Sep 21; 33(9):10065-10076. PubMed ID: 31226003 [Abstract] [Full Text] [Related]
13. High level of soluble expression in Escherichia coli and characterisation of the CyaA pore-forming fragment from a Bordetella pertussis Thai clinical isolate. Powthongchin B, Angsuthanasombat C. Arch Microbiol; 2008 Feb 21; 189(2):169-74. PubMed ID: 17846749 [Abstract] [Full Text] [Related]
14. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. Basar T, Havlícek V, Bezousková S, Hackett M, Sebo P. J Biol Chem; 2001 Jan 05; 276(1):348-54. PubMed ID: 11031260 [Abstract] [Full Text] [Related]
15. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Biochim Biophys Acta Biomembr; 2024 Jun 05; 1866(5):184311. PubMed ID: 38570122 [Abstract] [Full Text] [Related]
17. Structure-function studies of the adenylate cyclase toxin of Bordetella pertussis and the leukotoxin of Pasteurella haemolytica by heterologous C protein activation and construction of hybrid proteins. Westrop G, Hormozi K, da Costa N, Parton R, Coote J. J Bacteriol; 1997 Feb 30; 179(3):871-9. PubMed ID: 9006045 [Abstract] [Full Text] [Related]
18. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. Osickova A, Khaliq H, Masin J, Jurnecka D, Sukova A, Fiser R, Holubova J, Stanek O, Sebo P, Osicka R. J Biol Chem; 2020 Jul 10; 295(28):9268-9280. PubMed ID: 32461253 [Abstract] [Full Text] [Related]
19. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Masin J, Fiser R, Linhartova I, Osicka R, Bumba L, Hewlett EL, Benz R, Sebo P. Infect Immun; 2013 Dec 10; 81(12):4571-82. PubMed ID: 24082076 [Abstract] [Full Text] [Related]
20. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. Masin J, Osickova A, Jurnecka D, Klimova N, Khaliq H, Sebo P, Osicka R. J Biol Chem; 2020 Jul 10; 295(28):9349-9365. PubMed ID: 32393579 [Abstract] [Full Text] [Related] Page: [Next] [New Search]