These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
694 related items for PubMed ID: 29627679
1. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Xing M, Wang X, Wang E, Gao L, Chang J. Acta Biomater; 2018 May; 72():381-395. PubMed ID: 29627679 [Abstract] [Full Text] [Related]
2. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B. Acta Biomater; 2017 Oct 01; 61():217-232. PubMed ID: 28807800 [Abstract] [Full Text] [Related]
3. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN, Hospodiuk M, Ozbolat IT. Acta Biomater; 2019 Sep 01; 95():348-356. PubMed ID: 30831326 [Abstract] [Full Text] [Related]
4. Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Naruphontjirakul P, Tsigkou O, Li S, Porter AE, Jones JR. Acta Biomater; 2019 May 01; 90():373-392. PubMed ID: 30910622 [Abstract] [Full Text] [Related]
5. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y, Wu T, Ye A, Xu J, Guo F, Cheng X. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec 01; 27(12):1499-505. PubMed ID: 24640374 [Abstract] [Full Text] [Related]
6. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Wu C, Zhou Y, Lin C, Chang J, Xiao Y. Acta Biomater; 2012 Oct 01; 8(10):3805-15. PubMed ID: 22750735 [Abstract] [Full Text] [Related]
7. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y. Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():134-142. PubMed ID: 28024569 [Abstract] [Full Text] [Related]
8. Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. Lourenço AH, Torres AL, Vasconcelos DP, Ribeiro-Machado C, Barbosa JN, Barbosa MA, Barrias CC, Ribeiro CC. Mater Sci Eng C Mater Biol Appl; 2019 Jun 01; 99():1289-1303. PubMed ID: 30889663 [Abstract] [Full Text] [Related]
9. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Fernandes JS, Gentile P, Martins M, Neves NM, Miller C, Crawford A, Pires RA, Hatton P, Reis RL. Acta Biomater; 2016 Oct 15; 44():168-77. PubMed ID: 27554018 [Abstract] [Full Text] [Related]
10. Osteogenic potential of adipogenic predifferentiated human bone marrow-derived multipotent stromal cells for bone tissue-engineering. Moya A, Larochette N, Bourguignon M, El-Hafci H, Potier E, Petite H, Logeart-Avramoglou D. J Tissue Eng Regen Med; 2018 Mar 15; 12(3):e1511-e1524. PubMed ID: 28875591 [Abstract] [Full Text] [Related]
11. Macroporous alginate foams crosslinked with strontium for bone tissue engineering. Catanzano O, Soriente A, La Gatta A, Cammarota M, Ricci G, Fasolino I, Schiraldi C, Ambrosio L, Malinconico M, Laurienzo P, Raucci MG, Gomez d'Ayala G. Carbohydr Polym; 2018 Dec 15; 202():72-83. PubMed ID: 30287045 [Abstract] [Full Text] [Related]
12. Inhibition of the negative effect of high glucose on osteogenic differentiation of bone marrow stromal cells by silicon ions from calcium silicate bioceramics. Dong X, Wang X, Xing M, Zhao C, Guo B, Cao J, Chang J. Regen Biomater; 2020 Feb 15; 7(1):9-17. PubMed ID: 32440357 [Abstract] [Full Text] [Related]
13. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis In Vitro. Gu Y, Zhang J, Zhang X, Liang G, Xu T, Niu W. Tissue Eng Regen Med; 2019 Aug 15; 16(4):415-429. PubMed ID: 31413945 [Abstract] [Full Text] [Related]
14. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Adv Healthc Mater; 2024 Aug 15; 13(20):e2400154. PubMed ID: 38647029 [Abstract] [Full Text] [Related]
15. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. Cao D, Xu Z, Chen Y, Ke Q, Zhang C, Guo Y. J Biomed Mater Res B Appl Biomater; 2018 Feb 15; 106(2):863-873. PubMed ID: 28419693 [Abstract] [Full Text] [Related]
16. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y, Li T, Ma H, Zhai D, Deng C, Wang J, Zhuo S, Chang J, Wu C. Acta Biomater; 2018 Jun 15; 73():531-546. PubMed ID: 29656075 [Abstract] [Full Text] [Related]
18. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Zhao S, Wang H, Zhang Y, Huang W, Rahaman MN, Liu Z, Wang D, Zhang C. Acta Biomater; 2015 Mar 15; 14():185-96. PubMed ID: 25534470 [Abstract] [Full Text] [Related]
19. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. Koroleva A, Deiwick A, Nguyen A, Schlie-Wolter S, Narayan R, Timashev P, Popov V, Bagratashvili V, Chichkov B. PLoS One; 2015 Mar 15; 10(2):e0118164. PubMed ID: 25706270 [Abstract] [Full Text] [Related]
20. Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair. Han X, Zhou X, Qiu K, Feng W, Mo H, Wang M, Wang J, He C. Colloids Surf B Biointerfaces; 2019 Jul 01; 179():363-373. PubMed ID: 30999115 [Abstract] [Full Text] [Related] Page: [Next] [New Search]