These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 2963226

  • 1. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium.
    Drust DS, Creutz CE.
    Nature; 1988 Jan 07; 331(6151):88-91. PubMed ID: 2963226
    [Abstract] [Full Text] [Related]

  • 2. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells.
    Ali SM, Geisow MJ, Burgoyne RD.
    Nature; 1989 Jul 27; 340(6231):313-5. PubMed ID: 2526299
    [Abstract] [Full Text] [Related]

  • 3. Calpactin in exocytosis.
    Burgoyne RD.
    Nature; 1988 Jan 07; 331(6151):20. PubMed ID: 2963225
    [No Abstract] [Full Text] [Related]

  • 4. The stimulatory effect of calpactin (annexin II) on calcium-dependent exocytosis in chromaffin cells: requirement for both the N-terminal and core domains of p36 and ATP.
    Ali SM, Burgoyne RD.
    Cell Signal; 1990 Jan 07; 2(3):265-76. PubMed ID: 2144764
    [Abstract] [Full Text] [Related]

  • 5. Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla.
    Drust DS, Creutz CE.
    J Neurochem; 1991 Feb 07; 56(2):469-78. PubMed ID: 1824861
    [Abstract] [Full Text] [Related]

  • 6. The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C.
    Sarafian T, Pradel LA, Henry JP, Aunis D, Bader MF.
    J Cell Biol; 1991 Sep 07; 114(6):1135-47. PubMed ID: 1832677
    [Abstract] [Full Text] [Related]

  • 7. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM, Pollard HB.
    J Cell Biochem; 1982 Sep 07; 18(3):295-311. PubMed ID: 7068784
    [Abstract] [Full Text] [Related]

  • 8. Further characterization of the aggregation and fusion of chromaffin granules by synexin as a model for compound exocytosis.
    Creutz CE, Scott JH, Pazoles CJ, Pollard HB.
    J Cell Biochem; 1982 Sep 07; 18(1):87-97. PubMed ID: 6121822
    [Abstract] [Full Text] [Related]

  • 9. cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin.
    Creutz CE.
    J Cell Biol; 1981 Oct 07; 91(1):247-56. PubMed ID: 6457840
    [Abstract] [Full Text] [Related]

  • 10. Distinct heterotrimeric GTP-binding-proteins act in series to control the exocytotic machinery in chromaffin cells.
    Vitale N, Aunis D, Bader MF.
    Cell Mol Biol (Noisy-le-grand); 1994 Jul 07; 40(5):707-15. PubMed ID: 7526920
    [Abstract] [Full Text] [Related]

  • 11. Characterization of Ca2(+)-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins.
    Blackwood RA, Ernst JD.
    Biochem J; 1990 Feb 15; 266(1):195-200. PubMed ID: 2138016
    [Abstract] [Full Text] [Related]

  • 12. Arachidonic acid release and catecholamine secretion from digitonin-treated chromaffin cells: effects of micromolar calcium, phorbol ester, and protein alkylating agents.
    Frye RA, Holz RW.
    J Neurochem; 1985 Jan 15; 44(1):265-73. PubMed ID: 3917291
    [Abstract] [Full Text] [Related]

  • 13. Differential recognition of secretory vesicles by annexins. European Molecular Biology Organization Course "Advanced Techniques for Studying Secretion".
    Creutz CE, Moss S, Edwardson JM, Hide I, Gomperts B.
    Biochem Biophys Res Commun; 1992 Apr 15; 184(1):347-52. PubMed ID: 1533123
    [Abstract] [Full Text] [Related]

  • 14. Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein.
    Zachowski A, Henry JP, Devaux PF.
    Nature; 1989 Jul 06; 340(6228):75-6. PubMed ID: 2544808
    [Abstract] [Full Text] [Related]

  • 15. Synhibin: a new calcium-dependent membrane-binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion.
    Pollard HB, Scott JH.
    FEBS Lett; 1982 Dec 13; 150(1):201-6. PubMed ID: 6218998
    [No Abstract] [Full Text] [Related]

  • 16. Regulation of secretion from adrenal chromaffin cells.
    Pollard HB, Ornberg R, Levine M, Brocklehurst K, Forsberg E, Lelkes PI, Morita K.
    Physiologist; 1985 Aug 13; 28(4):247-54. PubMed ID: 2931732
    [No Abstract] [Full Text] [Related]

  • 17. Identification of a secretory granule-binding protein as caldesmon.
    Burgoyne RD, Cheek TR, Norman KM.
    Nature; 1985 Aug 13; 319(6048):68-70. PubMed ID: 3941739
    [Abstract] [Full Text] [Related]

  • 18. Mammary gland Ca2+-binding (-dependent) proteins: identification as calelectrins and calpactin I/p36.
    Hom YK, Sudhof TC, Lozano JJ, Haindl AH, Rocha V.
    J Cell Physiol; 1988 Jun 13; 135(3):435-42. PubMed ID: 2969382
    [Abstract] [Full Text] [Related]

  • 19. Purification and mode of action of synexin: a protein enhancing calcium-induced membrane aggregation.
    Morris SJ, Hughes JM, Whittaker VP.
    J Neurochem; 1982 Aug 13; 39(2):529-36. PubMed ID: 6211522
    [Abstract] [Full Text] [Related]

  • 20. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry.
    Nakata T, Sobue K, Hirokawa N.
    J Cell Biol; 1990 Jan 13; 110(1):13-25. PubMed ID: 2136859
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.