These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 2963330

  • 1. Selenoprotein A of the clostridial glycine reductase complex: purification and amino acid sequence of the selenocysteine-containing peptide.
    Sliwkowski MX, Stadtman TC.
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):368-71. PubMed ID: 2963330
    [Abstract] [Full Text] [Related]

  • 2. Glycine reductase selenoprotein A is not a glycoprotein: the positive periodic acid-Schiff reagent test is the result of peptide bond cleavage and carbonyl group generation.
    Kimura Y, Stadtman TC.
    Proc Natl Acad Sci U S A; 1995 Mar 14; 92(6):2189-93. PubMed ID: 7892245
    [Abstract] [Full Text] [Related]

  • 3. Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum.
    Sliwkowski MX, Stadtman TC.
    Biofactors; 1988 Dec 14; 1(4):293-6. PubMed ID: 3255358
    [Abstract] [Full Text] [Related]

  • 4. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.
    Garcia GE, Stadtman TC.
    J Bacteriol; 1991 Aug 14; 173(15):4908. PubMed ID: 1830304
    [No Abstract] [Full Text] [Related]

  • 5. Amino acid sequence around the active-site selenocysteine of rat liver glutathione peroxidase.
    Condell RA, Tappel AL.
    Biochim Biophys Acta; 1982 Dec 20; 709(2):304-9. PubMed ID: 6217842
    [Abstract] [Full Text] [Related]

  • 6. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.
    Garcia GE, Stadtman TC.
    J Bacteriol; 1991 Mar 20; 173(6):2093-8. PubMed ID: 1825826
    [Abstract] [Full Text] [Related]

  • 7. Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.
    Garcia GE, Stadtman TC.
    J Bacteriol; 1992 Nov 20; 174(22):7080-9. PubMed ID: 1429431
    [Abstract] [Full Text] [Related]

  • 8. Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex.
    Sliwkowski MX, Stadtman TC.
    J Biol Chem; 1987 Apr 05; 262(10):4899-904. PubMed ID: 2951374
    [Abstract] [Full Text] [Related]

  • 9. Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethyl-selenoprotein A.
    Stadtman TC, Davis JN.
    J Biol Chem; 1991 Nov 25; 266(33):22147-53. PubMed ID: 1939235
    [Abstract] [Full Text] [Related]

  • 10. Multiple selenocysteine content of selenoprotein P in rats.
    Motchnik PA, Tappel AL.
    J Inorg Biochem; 1990 Nov 25; 40(3):265-9. PubMed ID: 2149860
    [Abstract] [Full Text] [Related]

  • 11. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety.
    Cone JE, Del Río RM, Davis JN, Stadtman TC.
    Proc Natl Acad Sci U S A; 1976 Aug 25; 73(8):2659-63. PubMed ID: 1066676
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Clostridial glycine reductase complex. Purification and characterization of the selenoprotein component.
    Cone JE, del Río RM, Stadtman TC.
    J Biol Chem; 1977 Aug 10; 252(15):5337-44. PubMed ID: 885854
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES, Sarioglu H, Lottspeich F, Holmgren A, Böck A.
    J Mol Biol; 1999 Oct 08; 292(5):1003-16. PubMed ID: 10512699
    [Abstract] [Full Text] [Related]

  • 16. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues.
    Zhang Y, Romero H, Salinas G, Gladyshev VN.
    Genome Biol; 2006 Oct 08; 7(10):R94. PubMed ID: 17054778
    [Abstract] [Full Text] [Related]

  • 17. Selenium-dependent clostridial glycine reductase.
    Stadtman TC.
    Methods Enzymol; 1978 Oct 08; 53():373-82. PubMed ID: 713845
    [No Abstract] [Full Text] [Related]

  • 18. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?
    Arnér ES.
    Exp Cell Res; 2010 May 01; 316(8):1296-303. PubMed ID: 20206159
    [Abstract] [Full Text] [Related]

  • 19. Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components.
    Tanaka H, Stadtman TC.
    J Biol Chem; 1979 Jan 25; 254(2):447-52. PubMed ID: 762072
    [No Abstract] [Full Text] [Related]

  • 20. Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase.
    Rother M, Böck A, Wyss C.
    Arch Microbiol; 2001 Dec 25; 177(1):113-6. PubMed ID: 11797052
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.