These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 29641394
1. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S, Huang H. IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394 [Abstract] [Full Text] [Related]
2. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S, Huang H. IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332 [Abstract] [Full Text] [Related]
3. Proportional Myoelectric Control of a Virtual Inverted Pendulum Using Residual Antagonistic Muscles: Toward Voluntary Postural Control. Fleming A, Huang S, Huang H. IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1473-1482. PubMed ID: 31180864 [Abstract] [Full Text] [Related]
4. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. Seyedali M, Czerniecki JM, Morgenroth DC, Hahn ME. J Neuroeng Rehabil; 2012 May 28; 9():29. PubMed ID: 22640660 [Abstract] [Full Text] [Related]
5. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control. Huang S, Wensman JP, Ferris DP. IEEE Trans Neural Syst Rehabil Eng; 2016 May 28; 24(5):573-81. PubMed ID: 26057851 [Abstract] [Full Text] [Related]
6. Coordination of Voluntary Residual Muscle Contractions in Transtibial Amputees: a Pilot Study. Fleming A, Huang S, Huang HH. Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul 28; 2018():2128-2131. PubMed ID: 30440824 [Abstract] [Full Text] [Related]
7. Bilateral symmetry in ankle-muscle activation in transtibial amputees. Verma N, Levy I, Sarma D, Paulus P, Petersen B, Weber DJ. Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 28; 2020():3775-3778. PubMed ID: 33018823 [Abstract] [Full Text] [Related]
8. Proportional Myoelectric Control of a Powered Ankle Prosthesis for Postural Control under Expected Perturbation: A Pilot Study. Fleming A, Huang HH. IEEE Int Conf Rehabil Robot; 2019 Jun 28; 2019():899-904. PubMed ID: 31374744 [Abstract] [Full Text] [Related]
9. Characterizing Residual Muscle Properties in Lower Limb Amputees Using High Density EMG Decomposition: A Pilot Study. Fylstra BL, Dai C, Hu X, Huang HH. Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul 28; 2018():5974-5977. PubMed ID: 30441697 [Abstract] [Full Text] [Related]
10. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. Wang J, Kannape OA, Herr HM. IEEE Int Conf Rehabil Robot; 2013 Jun 28; 2013():6650391. PubMed ID: 24187210 [Abstract] [Full Text] [Related]
12. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. Huang S, Ferris DP. J Neuroeng Rehabil; 2012 Aug 10; 9():55. PubMed ID: 22882763 [Abstract] [Full Text] [Related]
13. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. Farmer S, Silver-Thorn S, Voglewede P, Beardsley SA. J Neural Eng; 2014 Oct 10; 11(5):056027. PubMed ID: 25246110 [Abstract] [Full Text] [Related]
14. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Au S, Berniker M, Herr H. Neural Netw; 2008 May 10; 21(4):654-66. PubMed ID: 18499394 [Abstract] [Full Text] [Related]
15. The effect of powered ankle prostheses on muscle activity during walking. Kim J, Gardinier ES, Vempala V, Gates DH. J Biomech; 2021 Jul 19; 124():110573. PubMed ID: 34153660 [Abstract] [Full Text] [Related]
16. Volitional control of ankle plantar flexion in a powered transtibial prosthesis during stair-ambulation. Kannape OA, Herr HM. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Jul 19; 2014():1662-5. PubMed ID: 25570293 [Abstract] [Full Text] [Related]
17. Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses. Chen B, Wang Q, Wang L. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Jul 19; 2014():2545-8. PubMed ID: 25570509 [Abstract] [Full Text] [Related]
18. Development of a neural network based control algorithm for powered ankle prosthesis. Keleş AD, Yucesoy CA. J Biomech; 2020 Dec 02; 113():110087. PubMed ID: 33157417 [Abstract] [Full Text] [Related]
19. Motor control and learning with lower-limb myoelectric control in amputees. Alcaide-Aguirre RE, Morgenroth DC, Ferris DP. J Rehabil Res Dev; 2013 Dec 02; 50(5):687-98. PubMed ID: 24013916 [Abstract] [Full Text] [Related]
20. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees. Silver-Thorn B, Current T, Kuhse B. Prosthet Orthot Int; 2012 Dec 02; 36(4):435-42. PubMed ID: 22581661 [Abstract] [Full Text] [Related] Page: [Next] [New Search]